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1 Problem description (Chao, Shepherd)

An Al6061-T6 cylinder with dimensions

L = 0.61 m

Rin = 0.01975 m

Rout = 0.02064 m

t = 0.00089 m

and material parameters

E = 69 · 109 N/m2

ν = 0.33

ρ = 2780 kg/m3

is subjected to detonation loading (Fig. 1). The cylinder is modeled as a shell with a radius
of R = 0.020195m and a thickness of t = 0.00089m . The finite element discretizations
consists of 16110 shell finite elements.

2 Detonation pressure loading

The detonation pressure loading on the cylinder can be approximated with the Taylor-
Zeldovich model:

p(x, t) =

{
p1, 0 < t < tcj

(p2 − p3)e(tcj−t)/T ) + p3, tcj < t <∞ (1)

with
tcj = x/vcj
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Figure 1: Experimental set up [2].
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Figure 2: Stress-strain plot for Al6061-T6.

and
T ≈ tcj/3. (2)

For the numerical computations following parameters have been chosen:

p1 = 0.0 Pa

p2 = 2.6 · 106 Pa

p3 = 0.75 · 106 Pa

vcj = 2365.0 m/s

The comparison between the experimental and approximated pressure plots are shown in
Figures 3 and 4.
The sound speed in aluminum is:

vcyl =

√
E

ρ(1− ν2)
= 5277.6 m/s (3)

The transversal wave speed of the tube is:

vc0,cyl =

[
E2h2

3ρ2R2(1− ν2)

]1/4

= 813.46 m/s (4)

The shear wave speed in aluminum is:

vd,cyl =

√
κG

ρ
=

√
κE

2.0 · (1.0 + ν)ρ
= 2788.5 m/s (5)

with κ = 5
6
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Figure 3: Experimental pressure history and its approximation at transducer 1.
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Figure 4: Experimental pressure history and its approximation at transducer 2.
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Figure 5: Geometrically perfect tube. Comparison of circumferential strain at gage one
at 282 mm.

3 Comparison of the experiment with thin-shell com-

putations

3.1 Geometrically perfect tube

Strain Gage Locations: Strain gages one, two, and four are located along an axial line
on the outer tube surface at 282 mm, 297 mm, and 328 mm from the left end of the
specimen. Strain gage 6 is located at 180o at 305 mm.

3.2 Tube with thickness imperfections

We assume a thickness imperfection of five or ten percent (E = 5 or E = 10 in Fig. 7).
The computed circumferential strain has been plotted at the five positions shown in Fig.
7, right. The results for an elastic tube with a thickness imperfection of five percent and a
thickness of 0.00089, 0.0008, and 0.00098 are plotted in Figs. 8, 10, and 11, respectively.

The results for an elastic tube with a thickness imperfection of ten percent and a
thickness of 0.00089 is plotted in 9.

The results for a viscoplastic tube with a thickness imperfection of ten percent, a
thickness of 0.00089, and a yield stress of σy = 90MPa or σy = 50MPa are plotted in
Figs. 12 and 14 , respectively.
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Figure 6: Computational pressure at strain gage one at 282 mm for different exponential
decay rates (see equation 2).
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Figure 7: Tube with thickness imperfection and computational sensor positions.
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Figure 8: Tube with 5% thickness imperfection and t = 0.00089m. Comparison of the
circumferential strain at 0.282m.

experiment

sensor 3
sensor 2
sensor 1
sensor 0

sensor 4

St
ra

in

Time[ms]

 0.002

 0.0015

 0.001

 0.0005

 0

−0.0005
 0.2  0.25  0.3  0.35  0.4  0.45  0.5  0.55

Figure 9: Tube with 10% thickness imperfection and t = 0.00089m. Comparison of the
circumferential strain at 0.282m.
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Figure 10: Tube with 5% thickness imperfection and t = 0.0008m. Comparison of the
circumferential strain at 0.282m.
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Figure 11: Tube with 5% thickness imperfection and t = 0.00098m. Comparison of the
circumferential strain at 0.282m.
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Figure 12: Tube with 10% thickness imperfection, t = 0.00089m, and σy = 90MPa.
Comparison of the circumferential strain at 0.282m.
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Figure 13: Tube with 10% thickness imperfection, t = 0.00089m, and σy = 50MPa.
Comparison of the circumferential strain at 0.282m.
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Figure 14: Tube with 12% thickness imperfection, t = 0.00089m, and σy = 70MPa.
Comparison of the circumferential strain at 0.282m.

3.3 Sensitivity to detonation parameters

The results are plotted in Figures 15 and 16.
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Figure 15: CJ velocities 2286m/s and 2443m/s. Comparison of the circumferential strain
at 0.282m.

 0.002

 0.0015

 0.001

 0.0005

 0

−0.0005
 0.2  0.25  0.3  0.35  0.4  0.45  0.5  0.55

Time[ms]

St
ra

in

experiment
pressure 2.642, velocity 2365
pressure 2.558, velocity2365

Figure 16: CJ pressures 2.642MPa and 2.558MPa. Comparison of the circumferential
strain at 0.282m.
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Figure 17: Three different meshes. Comparison of the circumferential strain at 0.282m.

3.4 Sensitivity to mesh size

The results for three different meshes with 2640, 10560, and 42240 nodes are plotted in
Figure 17.

The element size necessary to resolve the occurring vibrations can be estimated from
the wave length

λ ≈ 813.46m
s

39000.0s
= 0.021m. (6)

Hence, the element length should be less than 0.021/20m ≈ 0.0011m. The total number
of nodes can be estimated with

2.0 · 3.14 · 0.020195

0.0011
· 0.61

0.0011
= 115.3 · 554.5 = 63933.8 (7)
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Figure 18: Comparison of the circumferential strain at 0.282m for three different pressure
decay rates (see equation 2 and figure 6).

4 Sensitivity to pressure decay rate

The results for three different pressure decay rates (see figure 6) are plotted in figure 18.
The mesh size for all three computations is 42240 nodes.
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Figure 19: Circumferential strains for the experiment and computation compared with a
sinus wave of 19417Hz.

5 Mass spring model

The experimental tube vibrates with a frequency of 2× 19417Hz = 38294.0Hz (see Fig.
19). The frequency of the damped computational tube is slightly smaller.

An analytical estimate for the tube frequency can be derived by considering a small
piece of the tube with the dimensions [ds×t×1] as attached to a spring with the stiffness c.
For a ring, the following relation between the internal pressure p and radial displacements
∆r is valid:

p =
Et

r2
∆r (8)

Hence, the tube can be represented by a mass spring model with:

tρ∆r̈ ds+
Et

r2
∆r ds = 0 (9)

The frequency of the mass spring model

f =
1

2π

√
E

r2ρ
= 39282

1

s
(10)

is in good agreement with the measured tube frequency.
The mass spring model should give a good estimate for the maximum displacements

during the dynamic pressure loading, since

• the transversal wave speed in the tube is by a factor of 2365/813.5 = 2.907 smaller
than the detonation velocity
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• the pressure can be assumed constant during one cycle, T = 1/f = 0.02545ms (see
Fig. 6)

Using these assumptions and energy conservation, the circumferential strain in the
dynamically loaded tube can be estimated with:

ε =
2pr

Et
= 0.001616 (11)

which is in good agreement with the computations.
Note, in the previous derivations only the “ring” stiffness has been considered. There-

fore, the computed quantities can be considered as upper bounds for the experimental
values.

6 Normal shock equations

For an ideal gas the following relations between the unshocked x1 and shocked x2 state
variables are valid:

p2

p1

=
2γM2

1 − (γ − 1)

γ + 1
(12)

ρ2

ρ1

=
(γ + 1)M 2

1

(γ − 1)M 2
1 + 2

(13)

T2

T1

=
[2γM 2

1 − (γ − 1)][(γ − 1)M 2
1 + 2]

(γ + 1)2M2
1

(14)

where M1 is the shock Mach number defined as

M1 =
Ws

a1

(15)

where Ws is the shock velocity relative to the tube and a1 is the sound speed in the
unshocked gas, given by:

a2
1 =

γp1

ρ1

(16)

In the present experiment, the ratio of the CJ pressure 2.6 · 106 to the unshocked
pressure 80 · 103 requires a shock with M1 = 5.2915. Further, the CJ shock velocity of
2365 gives a unshocked density of 0.5607, which leads to a shocked density of 2.85441.
The velocity in the shocked region is initialized with 1900.5 and in the unshocked region
with 0.
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Figure 20: Comparison of the circumferential strain at 0.282m.

7 Shell-Fluid Coupled Simulation

Initial conditions in the shocked region are

ρ = 6.9078 p = 2.0 · 106 w = 2144.56 (17)

and in the unshocked region are

ρ = 1.0121, p = 8.0 · 104 w = 872.13 (18)

The frequency of the tube vibrations for the used coarse shell mesh is smaller than the
experimental frequency, Fig. 20.

8 Shell - 1D Full Chemistry Coupled Simulation

The shell is discretized with 84288 elements. The pressures have been computed using a
full chemistry model for the gaseous detonation of the ethylene oxygen mixture. Fig. 21.
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Figure 21: Comparison of the circumferential strain at 0.282m.
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