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Al 6061-T6 Tube Fracture (J. Shepherd)

Fractured tubes
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m Modeling and simulation challenges
m Ductile mixed mode fracture with large deformations

m Successive change of the mesh topology
m Fluid-shell interaction under changing mesh topology

Ductile fracture
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Fractured Thin-Shell Kinematics

Reference configuration Deformed configuration

T = (01, 0,) + 03as r¥ = 2%(01,02) + 6%az

m Kirchhoff-Love assumption: Director a, is normal to the deformed
middle surface
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Fractured Thin-Shell Equilibrium

m Shell and cohesive interface contribute to the internal
virtual work
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Inter face

m Shell internal virtual work consists of a membrane and bending term

6“?%6” — /(no‘ dao + m® - daz ,)dS2

m Cohesive internal virtual work consists of a tearing, shearing, and hinge term

ST e = / (t-S[ax] + s - 6[as]) dr o
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Subdivision FE-Discretization

m Away from crack flanks, conforming FE discretization

requires smooth shape functions

m On regular patches, quartic box-splines are used
12
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m Onirregular patches, subdivision schemes are used (here Loop's scheme)
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L / |
/|
/ /
/1 /|

F. Cirak, M. Ortiz, P. Schroder, Int. J. Numer. Meth. Engrg. 47 (2000) )
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Discontinuous Shape Functions

m Pre-fractured patches operate independently for
Interpolation purposes

Element J Element K K

Membrane mode

_ﬂﬂ& 3) Q(

Shear mode Bending mode

m Edge opening displacements and rotations activate
cohesive tractions
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Cohesive Interface Model

m Membrane, shear, and bending tractions are computed

by numerical integration over shell thickness
At each quadrature point a conventional irreversible cohesive model is used
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Displacement jump Displacement jump
Linearly decreasing envelope Smith-Ferrante envelope

m Conformity prior to crack initiation can be enforced

F. Cirak, M. Ortiz, A. Pandolfi, CMAME (2005)
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Simply Supported Plate

Normalized max. deflection
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Penalty parameter [x 69000]

Linear elastic material: Geometry:
Young’'s modulus 69000 Length 1.0
Poisson’s ratio 0.3 Thickness 0.1
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Fluid-Shell Coupling: Overview

m High speed flows interacting with thin-shells effectively
require a coupled Eulerian-Lagrangian approach
m [n Eulerian formulations, mesh points are fixed

m [n Lagrangian formulations, mesh points follow the trajectories of material
points

m Eulerian-Lagrangian coupling
m Arbitrary Lagrangian Eulerian method
m High accuracy, but algorithmically challenging for shells with large deformations

m Interface tracking and Interface capturing schemes
m Algorithmically very robust
m Well established in Cartesian mesh based Eulerian fluid codes
m Recently applied to fluid-solid coupling
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Gas Dynamics

m Compressible inviscid fluid flow (Euler equations)
ap

o +V.-(pv) =0 Mass conservation

o .
5 (pv) + V- -(pv®v+Ip) =0 Momentum conservation

OF
— +V-(E4+p)v]=0 Energy conservation

m Specific total energy

1
E = pe + Sl

m Equation of state for perfect gas
p=(y—1)pe ~y— ratio of specific heats
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Gas Dynamics - Discretization

m Euler equations in conservation law form
Vi+V-F=0

m Finite volume discretization on a Cartesian grid
/ V,tdx+/ Fdn =0
<2 I

m Reduced to one dimensional problems along each
coordinate axis using dimensional splitting
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m Fluxes are computed by solving local Riemann problems

m For additional features see amroc.sourceforge.net
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Explicit Fluid-Shell Coupling -1-

m Thin-shell and fluid equations are integrated with an explicit time
integration scheme
B

Eulerian
“ghost” fluid domain —

Lagrangian
thin-shell domain

m Coupling is achieved by enforcing:
m Continuity of normal velocity
m Continuity of traction normal component
m Unconstrained tangential slip
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Explicit Fluid-Shell Coupling —2-

m Enforcing the interface conditions on the fluid grid

through ghost-cells
m Ghost cell values are extrapolated from the values at the shell-fluid interface
m Normal velocity modifications in the ghost cells

Vtid = [(208hetl — VFiuia) - 1l 1+ (Vppyiq - £)1

V Fruid— €xtrapolated fluid velocity

Vghel— extrapolated shell velocity
n,t— normal and tangent to the interface

m Corresponds to reflecting the normal fluid velocity component in a moving local
coordinate frame attached to the shell

m Enforcing the interface conditions on the shell

m Interpolated pressures from the fluid mesh are applied as external traction
boundary conditions to the shell
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Airbag — Geometry and Discretization
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Shell Mesh: 10176 elements Fluid Mesh: 48x48x62 cells
F. Cirak, R. Radovitzky, C&S (2005) F. Cirak



Airbag — Limit Surface

total simulation
- . time

approx. 23 ms
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Airbag — Kinetic Energy

total simulation
time
approx. 23 ms
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Fluid Induced Fracture

Material model for Al 6061-T6:
J, - plasticity with viscosity

Cohesive interface model:
Linearly decreasing envelope
with loading and unloading
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Coupled Simulation in Elastic Regime
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Coupled Simulation in Elastic Regime

m Circumferential strain at x=28.2cm

2640 elem., 30x30x160 cells

0.002
10560 elem., 40x40x210 cells —
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m The fluid grid initialized with normal shock conditions

m [N contrast to the computation, the experiment performed
with a detonation wave
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Coupled Simulation with Fracture
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Coupled Simulation - Threshold

Density
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Coupled Simulation - Close-up
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Coupled Simulation - P, ., = 6.0MPa

m 20736 shell elements, 80x80x640 fluid cells
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Computational Specifics

m Computations performed on an Intel Xeon Cluster
m 41 processors for the fluid
m 29 processors for the shell
m Total computing time ~8h

Partitioning of the fluid domain

Partitioning of the shell domain alc@livermore
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Conclusions

m The shell and the fluid, as well as their coupled
Interaction, are considered in full detall

m [he proposed coupling approach is very robust and
efficient
m No remeshing
m Algorithmic coupling with minor modifications of shell and fluid solvers

m Although first steps towards validation are encouraging,
detonation tube experiments are far too challenging to
simulate. Currently, a new set of shock tube experiments
are done by J. Shepherd at Caltech.
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