### Shell-Fluid Coupled Simulation of Detonation-Driven Fracture and Fragmentation

#### Fehmi Cirak and Ralf Deiterding

California Institute of Technology





Third M.I.T. Conference on Computational Fluid and Solid Mechanics, June 14-17, 2005

### AI 6061-T6 Tube Fracture (J. Shepherd)



Experiments courtesy of J. Shepherd, Caltech

#### Modeling and simulation challenges

- Ductile mixed mode fracture with large deformations
- Successive change of the mesh topology
- Fluid-shell interaction under changing mesh topology

#### Fractured tubes





Ductile fracture

# **Fractured Thin-Shell Kinematics**

Reference configuration



Deformed configuration



 $\overline{r} = \overline{x}(\theta_1, \theta_2) + \theta^3 \overline{a}_3$ 

 $r^\pm=x^\pm( heta_1, heta_2)+ heta^3a_3^\pm$ 

 Kirchhoff-Love assumption: Director a<sub>3</sub> is normal to the deformed middle surface

# Fractured Thin-Shell Equilibrium

Shell and cohesive interface contribute to the internal virtual work

$$\delta \Pi_{Shell}^{int} + \delta \Pi_{Interface}^{int} - \delta \Pi^{ext} = 0$$

■ Shell internal virtual work consists of a membrane and bending term

$$\delta \Pi^{int}_{Shell} = \int (n^{lpha} \cdot \delta a_{lpha} + m^{lpha} \cdot \delta a_{3,lpha}) d\Omega$$

• Cohesive internal virtual work consists of a tearing, shearing, and hinge term  $\delta \Pi_{Interface}^{int} = \int (t \cdot \delta [x] + s \cdot \delta [a_3]) d\Gamma_C$ 

## Subdivision FE-Discretization

- Away from crack flanks, conforming FE discretization requires smooth shape functions
  - On regular patches, quartic box-splines are used

$$\overline{x}_h(\xi,\eta) = \sum_{I=1}^{12} N^I(\xi,\eta)\overline{x}_I$$

On irregular patches, subdivision schemes are used (here Loop's scheme)







F. Cirak, M. Ortiz, P. Schröder, Int. J. Numer. Meth. Engrg. 47 (2000)

F. Cirak

# **Discontinuous Shape Functions**

Pre-fractured patches operate independently for interpolation purposes



 Edge opening displacements and rotations activate cohesive tractions

### **Cohesive Interface Model**

- Membrane, shear, and bending tractions are computed by numerical integration over shell thickness
  - At each quadrature point a conventional irreversible cohesive model is used



- Conformity prior to crack initiation can be enforced
  - F. Cirak, M. Ortiz, A. Pandolfi, CMAME (2005)

# Simply Supported Plate



| Linear elastic material: |       | Geometry: |     |
|--------------------------|-------|-----------|-----|
| Young's modulus          | 69000 | Length    | 1.0 |
| Poisson's ratio          | 0.3   | Thickness | 0.1 |

# Fluid-Shell Coupling: Overview

- High speed flows interacting with thin-shells effectively require a coupled Eulerian-Lagrangian approach
  - In Eulerian formulations, mesh points are fixed
  - In Lagrangian formulations, mesh points follow the trajectories of material points

### Eulerian-Lagrangian coupling

- Arbitrary Lagrangian Eulerian method
  - High accuracy, but algorithmically challenging for shells with large deformations
- Interface tracking and Interface capturing schemes
  - Algorithmically very robust
  - Well established in Cartesian mesh based Eulerian fluid codes
  - Recently applied to fluid-solid coupling

# Gas Dynamics

Compressible inviscid fluid flow (Euler equations)

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho v) = 0 \qquad \text{Mass conservation}$$

$$\frac{\partial}{\partial t} (\rho v) + \nabla \cdot (\rho v \otimes v + Ip) = 0 \qquad \text{Momentum conservation}$$

$$\frac{\partial E}{\partial t} + \nabla \cdot [(E+p)v] = 0 \qquad \text{Energy conservation}$$

Specific total energy

$$E = \rho e + \frac{1}{2}\rho \|v\|^2$$

Equation of state for perfect gas  

$$p = (\gamma - 1)\rho e$$
  $\gamma - ratio of specific heats$ 

### Gas Dynamics - Discretization

- Euler equations in conservation law form  $V_{,t} + \nabla \cdot F = 0$
- Finite volume discretization on a Cartesian grid

$$\int_{\Omega} \boldsymbol{V}_{,t} dx + \int_{\Gamma} \boldsymbol{F} dn = 0$$

Reduced to one dimensional problems along each coordinate axis using dimensional splitting

$$\frac{V_i^{n+1} - V_i^n}{\Delta t} h = \left(F_{i-\frac{1}{2}}^n - F_{i+\frac{1}{2}}^n\right) \qquad h - \text{ mesh size}$$

- Fluxes are computed by solving local Riemann problems
- For additional features see amroc.sourceforge.net

# Explicit Fluid-Shell Coupling -1-

Thin-shell and fluid equations are integrated with an explicit time integration scheme



- Coupling is achieved by enforcing:
  - Continuity of normal velocity
  - Continuity of traction normal component
  - Unconstrained tangential slip

# Explicit Fluid-Shell Coupling –2-

- Enforcing the interface conditions on the fluid grid through ghost-cells
  - Ghost cell values are extrapolated from the values at the shell-fluid interface
  - Normal velocity modifications in the ghost cells

 $m{v}_{Fluid} = \left[ (2 ilde{v}_{Shell} - ilde{v}_{Fluid}) \cdot m{n} 
ight] m{n} + ( ilde{v}_{Fluid} \cdot m{t}) m{t}$ 

 $ilde{v}_{Fluid}$  — extrapolated fluid velocity

 ${ ilde v}_{Shell}-$  extrapolated shell velocity

 $m{n}, m{t}-m{n}$  normal and tangent to the interface

 Corresponds to reflecting the normal fluid velocity component in a moving local coordinate frame attached to the shell

#### Enforcing the interface conditions on the shell

 Interpolated pressures from the fluid mesh are applied as external traction boundary conditions to the shell

# Airbag – Geometry and Discretization



#### Shell Mesh: 10176 elements

Fluid Mesh: 48x48x62 cells

F. Cirak, R. Radovitzky, C&S (2005)

F. Cirak

### Airbag – Limit Surface



total simulation time approx. 23 ms

F. Cirak

### Airbag – Kinetic Energy



total simulation time approx. 23 ms

F. Cirak

### Fluid Induced Fracture



Material model for Al 6061-T6:  $J_2$  - plasticity with viscosity

Cohesive interface model: Linearly decreasing envelope with loading and unloading

### **Coupled Simulation in Elastic Regime**



# **Coupled Simulation in Elastic Regime**

Circumferential strain at x=28.2cm



- The fluid grid initialized with normal shock conditions
- In contrast to the computation, the experiment performed with a detonation wave

### **Coupled Simulation with Fracture**



F. Cirak

### **Coupled Simulation - Threshold**



F. Cirak

### **Coupled Simulation - Close-up**



# Coupled Simulation - $P_{max} = 6.0MPa$

20736 shell elements, 80x80x640 fluid cells



# **Computational Specifics**

#### Computations performed on an Intel Xeon Cluster

- 41 processors for the fluid
- 29 processors for the shell
- Total computing time ~8h



Partitioning of the fluid domain



Partitioning of the shell domain





alc@livermore

### Conclusions

- The shell and the fluid, as well as their coupled interaction, are considered in full detail
- The proposed coupling approach is very robust and efficient
  - No remeshing
  - Algorithmic coupling with minor modifications of shell and fluid solvers
- Although first steps towards validation are encouraging, detonation tube experiments are far too challenging to simulate. Currently, a new set of shock tube experiments are done by J. Shepherd at Caltech.