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Time-accurate fluid-structure interaction simulations of strong shock and detonation
waves impinging on deforming solid structures benefit significantly from the application of
dynamic mesh adaptation in the fluid. A patch-based parallel fluid solver with adaptive
mesh refinement in space and time tailored for this problem class is presented; special
attention is given to the robustness of the finite volume scheme with embedded boundary
capability and a scalable implementation of the hierarchical mesh refinement method.

1. Introduction

The Center for Simulating the Dynamic Response of Materials at the California Insti-
tute of Technology has constructed a virtual test facility (VTF) for studying the three-
dimensional dynamic response of solid materials subject to strong shock and detonation
waves propagating in fluids. While the fluid flow is simulated with a high-resolution
Cartesian finite volume upwind method that considers the solid as an embedded moving
body represented implicitly with a level set function, Lagrangian finite element schemes
are employed to describe the time-accurate material response subject to the current hy-
drostatic pressure loading. A loosely coupling temporal splitting method is applied to
update the boundary’s positions and velocities between time steps. The Cartesian finite
volume scheme is incorporated into a parallel structured dynamic mesh adaptation al-
gorithm that allows very fine local resolutions to capture the near-body fluid-structure
interaction (FSI) and incoming waves in the fluid at minimal computational costs.

In this paper, we describe the dynamically adaptive solver for compressible flows, in-
cluding shock and detonation waves with one-step reaction model, that enables highly
efficient FSI simulations in the VTF on distributed memory machines. After introducing
the governing fluid equations, we explain our specific implementation of the ghost fluid
approach [11]. In Sec. 4, we outline the structured adaptive mesh refinement (SAMR)
algorithm of Berger and Collela [3], and in particular the locality-preserving rigorous do-
main decomposition paradigma under which the method has been parallelized [7]. Section
5 details the extension of the SAMR implementation to loosely coupled FSI problems. The
final section, Sec. 6, gives a numerical example in which a detonation wave propagating
through a high explosive interacts with a surrounding solid cylinder. The enormous sav-
ings in compute time from mesh adaptation and parallelization demonstrate the efficiency
of the approach.
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2. Governing Equations

In order to model detonation waves we utilize the single-phase model proposed by
Fickett and Davis [13], which has also been used by Clarke et al. [4] to evaluate numerical
methods for detonation simulation. We assume a single chemical reaction A −→ B that
is modelled by a progress variable λ corresponding to the mass fraction ratio between the
density of the product B and the total density ρ, i.e. λ = ρB/ρ. The governing equations
of the model read

∂tρ + ∇ · (ρu) = 0 , ∂t(ρu) + ∇ · (ρu⊗ u) +∇p = 0 ,
∂t(ρE) + ∇ · ((ρE + p)u) = 0 , ∂tλ + u · ∇λ = ψ .

(1)

Herein, u is the velocity vector and E the specific total energy. The hydrostatic pressure
p is given by p = (γ − 1)(ρE − 1

2
ρuTu + ρλq) with γ denoting the ratio of specific heats

and q the heat release due to the chemical reaction per unit mass. System (1) together
with above pressure equation is a valid model both for detonations in combustible gases
and high energetic solid materials. As our focus in this paper is on the latter, we use the
simple rate function ψ = 2

TR
(1−λ)1/2 proposed by Fickett for detonations in solids in the

following. Herein, TR denotes a typical time associated with the reaction in which the
depletion from A to B is complete.

3. Cartesian Finite Volume Scheme with Embedded Boundaries

Following Clarke et al. [4], we apply the method of fractional steps to decouple the
chemical reaction and hydrodynamic transport numerically. The homogeneous system of
(1) and the scalar ordinary differential equation ∂tλ = ψ(λ) are solved successively with
the data of the preceding step as initial conditions. As the homogeneous system (1) is a
hyperbolic conservation law that admits discontinuous solutions, cf. [4], we use a time-
explicit finite volume discretization that achieves a proper upwinding in all characteristic
fields. The scheme is based on a straightforward generalization of the Roe scheme for the
purely hydrodynamic Euler equations and is extended to a multi-dimensional Cartesian
scheme via the method of fractional steps, cf. [22]. To circumvent the intrinsic problem of
unphysical total densities and internal energies near vacuum due to the Roe linearization,
cf. [10], the scheme has the possibility to switch to the simple, but extremely robust
Harten-Lax-Van Leer (HLL) Riemann solver. The occurrence of the disastrous carbuncle
phenomena [20], a multi-dimensional numerical crossflow instability that affects every
simulation of strong grid-aligned shocks or detonation waves, is prevented by introducing
a small amount of additional numerical viscosity in a multi-dimensional way [21]. This
hybrid Riemann solver is supplemented with the MUSCL-Hancock variable extrapolation
technique of Van Leer [22] to achieve second-order accuracy in regions where the solution
is smooth.

Geometrically complex moving boundaries are considered by utilizing some of the finite
volume cells as ghost cells to enforce immersed moving wall boundary conditions [11].
The boundary geometry is mapped onto the Cartesian mesh by employing a scalar level
set function φ that stores the signed distance to the boundary surface and allows the
efficient evaluation of the boundary outer normal in every mesh point as ~n = −∇φ/|∇φ|.
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Figure 1: Construction of
mirrored values to be used
in interior ghost cells (gray).

In coupled Eulerian-Lagrangian simulations, φ is updated
after every boundary synchronization step by calling the
closest-point-transform algorithm developed by Mauch [18].
A cell is considered to be a valid fluid cell within the interior,
if the distance φ in the cell midpoint is positive and is treated
as exterior otherwise.

For system (1), the boundary condition at a rigid wall
moving with velocity ~w is ~u ·~n = ~w ·~n. Enforcing the latter
with ghost cells, in which the discrete values are located
in the cell centers, requires the mirroring of the primitive
values ρ, ~u, p, λ across the embedded boundary. The normal
velocity in the ghost cells is set to (2~w ·~n−~u ·~n)~n, while the
mirrored tangential velocity remains unmodified. Mirrored
values are constructed by calculating spatially interpolated values in the point ~̃x = ~x+2φ~n
from neighboring interior cells. For instance, in two space dimensions, we employ a bilinear
interpolation between (usually) four adjacent cell values, but directly near the boundary
the number of interpolants needs to be decreased, cf. Fig. 1. It has to be emphasized
that for hyperbolic problems with discontinuities like detonation waves, special care must
be taken to ensure the monotonicity preservation of the numerical solution. Figure 1
highlights the necessary reduction of the interpolation stencil for some exemplary cases.
The interpolation locations are indicated by the origins of the arrows normal to the
complex boundary (dotted).

After the application of the numerical scheme, cells that have been used to impose
internal boundary conditions are set to the entire state vector of the nearest cell in the
interior. This operation ensures proper values in case such a cell becomes a regular interior
cell in the next step due to boundary movement. The consideration of ~w in the interior
ghost cells ensures that the embedded boundary propagates at most one cell further in
every time step.

4. Structured Adaptive Mesh Refinement

Numerical simulations of detonation waves require computational meshes that are able
to represent the strong local flow changes due to the reaction correctly. The shock of a self-
sustained detonation is very sensitive to changes in the energy release from the reaction
behind and the inability to resolve all reaction details usually causes a considerable error in
approximating the correct speed of propagation. In order to supply the required temporal
and spatial resolution efficiently, we employ the structured adaptive mesh refinement
(SAMR) method of Berger and Colella [3]. Instead of replacing single cells by finer ones,
as it is done in cell-oriented refinement techniques, the Berger-Collela SAMR method
follows a patch-oriented approach. Cells being flagged by various error indicators (shaded
in Fig. 2) are clustered with a special algorithm [2] into non-overlapping rectangular grids.
Refinement grids are derived recursively from coarser ones and a hierarchy of successively
embedded levels is thereby constructed (cf. Fig. 2). All mesh widths on level l are rl-
times finer than on level l−1, i.e. ∆tl := ∆tl−1/rl and ∆xk,l := ∆xk,l−1/rl with rl ≥ 2 for
l > 0 and with r0 = 1, and a time-explicit finite volume scheme will (in principle) remain
stable on all levels of the hierarchy.
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Figure 2: SAMR hierarchy.

The numerical scheme is applied on level l by calling a
single-grid routine in a loop over all subgrids. The sub-
grids get computationally decoupled by employing addi-
tional ghost cells around each computational grid. Three
different types of ghost cells have to be considered: Cells
outside of the root domain are used to implement physical
boundary conditions; ghost cells overlaid by a grid on level
l have a unique interior cell analogue and are set by copy-
ing the data value from the grid, where the interior cell is
contained (synchronization). On the root level no further
boundary conditions need to be considered, but for l > 0
internal boundaries can also occur. They are set by a con-
servative time-space interpolation from two previously calculated time steps of level l−1.

The regularity of the SAMR data allows high performance on vector and super-scalar
processors that allow cache optimizations. Small data arrays are effectively avoided by
leaving coarse level data structures untouched when higher level grids are created. Values
of cells covered by finer subgrids are overwritten by averaged fine grid values subsequently.
This operation leads to a modification of the numerical stencil on the coarse mesh and
requires a special flux correction in cells abutting a fine grid. The correction replaces
the coarse grid flux along the fine grid boundary by a sum of fine fluxes and ensures the
discrete conservation property of the hierarchical method (at least for purely Cartesian
problems without embedded boundaries). See [3] or [6] for details.

In our SAMR solver framework AMROC (Adaptive Mesh Refinement in Object-oriented
C++) [8], we follow a rigorous domain decomposition approach and partition the SAMR
hierarchy from the root level on. A careful analysis of the SAMR algorithm uncov-
ers that the only parallel operations under this paradigm are ghost cell synchroniza-
tion, redistribution of the data hierarchy and the application of the previously mentioned
flux correction terms. Interpolation and averaging, but in particular the calculation of
the flux corrections remain strictly local [6]. Currently, we employ a generalization of
Hilbert’s space-filling curve [19] to derive load-balanced root level distributions at run-
time. The entire SAMR hierarchy is considered by projecting the accumulated work
from higher levels onto the root level cells. Figure 3 shows a representative scalability
test for a three-dimensional spherical shock wave problem for the computationally in-
expensive Euler equations for a single polytropic gas without chemical reaction. The
test was run on a Linux Beowulf cluster of Pentium-4-2.4 GHz dual processor nodes
with Quadrics Interconnect. The base grid had 323 cells and two additional levels with
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Figure 3: SAMR scalability test.

refinement factors 2 and 4. The adaptive calculation
used approx. 7.0 M cells in each time step instead of
16.8 M cells in the uniform case. Displayed are the av-
erage costs for each root level time step. Although we
utilize a single-grid update routine in Fortran 77 in a
C++ framework with full compiler optimization, the
fraction of the time spent in this Fortran routine are
90.5 % on four and still 74.9 % on 16 CPUs. Hence, Fig.
3 shows a satisfying scale-up for at least up to 64 CPUs.
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advance level( l )
repeat rl times

if time to regrid
regrid( l )

level set generation( φl, I )

update fluid level( ~Ql, φl, ~w|I, ∆tl )
if level l + 1 exists

advance level(l + 1)
Correct ~Ql(t + ∆tl) with ~Ql+1(t + ∆tl)

if l = lc
send interface data( p(t + ∆tl)|I )
receive interface data( I, ~w|I )

t := t + ∆tl
return
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Figure 4. Left: SAMR algorithm for fluid-structure coupling. Right: data exchange
between advance level() and a conventional solid solver throughout one level 0 time step.

5. Fluid-Structure Coupling with SAMR

In the VTF, we apply a loosely coupled, partitioned approach and use separated solvers
to simulate the fluid and solid sub-problem. Fluid-structure interaction is assumed to take
place only at the evolving interface between fluid and solid and is implemented numerically
by exchanging boundary data after consecutive time steps. The Eulerian fluid solver
with embedded boundary capability (cf. Sec. 3) receives the velocities and the discrete
geometry of the solid surface, while only the hydrostatic pressure is communicated back to
the Lagrangian solid solver as a force acting on the solid’s exterior [1,16]. As the inviscid
Euler equations can not impose any shear on the solid structure, cf. [12], the fluid pressure
is sufficient to prescribe the entire stress tensor on the solid boundary. An efficient parallel
communication library has been implemented to support the boundary data exchange
between (dedicated) fluid and solid processes on distributed memory machines, see [9] for
details on this.

While the implementation of a loosely coupled FSI method is straightforward with
conventional solvers with consecutive time update, the utilization of the recursive SAMR
method is non-apparent. In the VTF, we treat the fluid-solid interface I as a discontinuity
that is a-priori refined at least up to a coupling level lc. The resolution at level lc has to
be sufficiently fine to ensure an accurate wave transmission between fluid and structure,
but will often not be the highest level of refinement, cf. Sec. 6. We formulate the
corresponding extension of the recursive SAMR algorithm of Berger and Collela [3] in the
routine advance level() outlined in pseudo-code on the left side of Fig. 4. The algorithm
calls the routine level set generation() to evaluate the signed distance φ for the actual level
l based on the currently available interface I. Together with the recent solid velocity on
the interface ~w|I , the discrete vector of state in the fluid ~Q is updated for the entire level
with the scheme detailed in Sec. 3. The method then proceeds recursively to higher levels
and utilizes the (more accurate) data from the next higher level to correct cells overlaid by
refinement. If level l is the coupling level lc, we use the updated fluid data to evaluate the
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pressure on the nodes of I to be sent to the solid and to receive updated mesh positions
and nodal velocities. The recursive order of the SAMR algorithm automatically ensures
that updated interface mesh information is available at later time steps on coarser levels
and to adjust the grids on level lc dynamically before the current surface mesh, i.e. the
level set information derived from it, is actually used to again advance level lc.

The data exchange between the solid and advance level(), is visualized in the right
graphic of Fig. 4 for an exemplary SAMR hierarchy with two additional levels with
r1,2 = 2. Figure 4 pictures the recursion in the SAMR method by numbering the fluid
update steps (F) according to the order determined by advance level(). The order of the
solid update steps (S) on the other hand is strictly linear. The red arrows correspond to
the sending of the interface pressures p|I from fluid to solid at the end of each time step
on level lc. The blue arrows visualize the sending of the interface mesh I and its nodal
velocities ~w|I after each solid update. The modification of refinement meshes is indicated
in Fig. 4 by the gray arrows; the initiating base level that remains fixed throughout the
regridding operation is indicated by the gray circles.

6. HMX Detonation in a Tantalum Cylinder

As computational example we present the three-dimensional dynamic interaction of a
detonation wave in the high explosive HMX (C4H8N8O8) with the walls (thickness 0.01 m)
and the closed end of a cylinder made of Tantalum. The cylinder has the length 0.10 m and
an outer radius of 0.0185 m. An inner combustion chamber of depth 0.055 m opens at its
left end. A non-adaptive tetrahedral structure mechanics finite element solver with special
artificial viscosity formulation for capturing dilatation and shear waves [15] is employed
for the solid update. The Tantalum is assumed to obey J2-flow theory of plasticity and
Vinet’s thermal equation equation of state with parameters derived from first-principle
calculations [14]. The shown computation used a solid mesh of 56,080 elements.

For the fluid initial conditions, we assume a fully developed one-dimensional steady
Chapman-Jouguet detonation with its front initially located at x = 0.01 m that we
prescribe according to the theory of Zeldovich, Neumann, and Döring (ZND) (see [13]
or [7] for detailed derivations). The detonation is propagating into the positive di-
rection, which allows the prescription of constant inflow boundary conditions at the
open left end (cf. Fig. 5). No deformations are allowed in the entire solid for x <
0.01 m to model a fully rigid material downstream of the initial wave. Further, no
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Figure 5: One-dimensional simu-
lation of the detonation in HMX.

deformations are possible on the outer hull of the
cylinder for 0.01 m ≤ x ≤ 0.03 m.

Unreacted HMX has a density of ρ0 = 1900 kg/m3

and gets depleted by a Chapman-Jouguet detonation
with propagation speed ≈ 9100 m/s resulting in an
energy release of q ≈ 5176 kJ/kg [17]. The hydrody-
namic flow can be described with reasonable accuracy
with a constant adiabatic exponent of γ = 3 [17]. We
assume atmospheric pressure p0 = 100 kPa in the un-
reacted material and set the unknown rate factor to
TR = 1µs. Fig. 5 displays the steadily propagating
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Figure 6. Left: compression of the wall material next to the combustion chamber due to
the detonation passage. Right: outward movement of the unconstrained walls and the
strong compression in axial direction due to the impact event.

pressure distribution of the ZND wave in a one-dimensional computation on a uniform
mesh with 960 finite volume cells. At considerably coarser resolutions, the head of the
detonation wave is not approximated to sufficient accuracy leading to an incorrect speed
of propagation and a significant reduction of the maximal pressure value. Hence, this FSI
problem benefits considerably from the application of dynamic mesh adaptation in the
fluid.

Two snapshots of the simulation displaying a cut through the hydrodynamic pressure
distribution and the normal stress in the axial direction are shown in Fig. 6. The left
graphic shows the initiation of stress waves at the head of the detonation (the slight delay
in the solid is due to its coarser mesh resolution). The right graphic at later time exhibits
the influence of the boundary conditions: While the material gets strongly compressed
initially, no normal stresses arise at the outer surface in the unconstrained section with
x ≥ 0.03 m. At t = 5.8µs, the HMX is fully depleted and the impact of the detonation
wave at the closed end has caused a very strong compression wave in the solid in the axial
direction. The reflected hydrodynamic shock wave is visible.

The fluid sub-problem has been run on a Cartesian domain of 0.03 m× 0.03 m× 0.06 m
and was discretized with 60 × 60 × 120 cells at the SAMR root level. While the solid
boundary is fully refined at the coupling level lc = 1 with r1 = 2, level 2 is only used to
capture the head of detonation wave accurately (r2 = 4). The SAMR mesh increases from
initially approx. 706 k cells on level 1 and 6.5 M on level 2 to about 930 k and 10.0 M cells
at later times. The number of grids on both levels varies between 400 and 1000. Compared
with a uniform fluid mesh of 480×480×960 ' 221 M cells, the enormous saving from mesh

Figure 7: Adaptation at t = 3.0µs.

adaptation is apparent. Figure 7 displays the
adapted fluid mesh in the mid plane for t = 3.0µs by
overlaying a schlieren plot of the fluid density onto
regions covered by level 1 (blue) and 2 (red). The
simulation ran on 4 nodes of a Pentium-4-2.4 GHz
dual processor system connected with Quadrics in-
terconnect for about 63 h real time. Six processes
were dedicated to the adaptive fluid simulation,
while two were used for the significantly smaller solid
problem.
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7. Conclusions

An efficient Cartesian finite volume method for the simulation of detonation waves in
FSI problems has been presented. The method is patch-based and considers embedded
complex boundaries with the ghost-fluid approach [11]. Distributed memory paralleliza-
tion is provided by a parallel variant of the SAMR method of Berger and Collela [3] that
follows a rigorous domain-decomposition approach [7]. An algorithmic extension of the
recursive SAMR method to loosely coupled FSI simulation with time-explicit solvers has
been described. The approach allows the accurate capturing of near-body fluid-structure
interaction, while resolution in space and time can be reduced effectively in the fluid far
field. As computational example, a detonation wave in a solid high energetic material
impinging on a Tantalum cylinder has been discussed. The example demonstrates the
enormous savings in the computational costs that can be obtained through structured
dynamic mesh adaptation in the fluid for this problem class: While the parallel calcu-
lation required only 504 h CPU (63 h real time), a simulation with an equivalent fluid
unigrid mesh can be expected to be in the range of 105 h CPU.

REFERENCES

1. M. Aivazis, W.A. Goddard, D.I. Meiron et al., Comput. Science & Eng. 2(2) 2000 42.
2. J. Bell, M. Berger, J. Saltzman, M. Welcome, SIAM J. Sci. Comp. 15(1) (1994) 127.
3. M. Berger and P. Colella, J. Comput. Phys. 82 (1988) 64.
4. J. F. Clarke, S. Karni, J. J. Quirk et al., J. Comput. Phys. 106 (1993) 215.
5. J. C. Cummings, M. Aivazis, R. Samtaney et al., J. Supercomput. 23 (2002) 39.
6. R. Deiterding, Parallel adaptive simulation of multi-dimensional detonation struc-

tures, PhD thesis, Brandenburgische Technische Universität Cottbus, 2003.
7. R. Deiterding, in Notes Comput. Science & Eng. 41, Springer, New York, (2005) 361.
8. R. Deiterding, AMROC, available at http://amroc.sourceforge.net (2005).
9. R. Deiterding, R. Radovitzky, S. P. Mauch et al., Engineering with Computers,

Springer, (2005) submitted.
10. B. Einfeldt, C. D. Munz, P. L. Roe, and B. Sjögreen, J. Comput. Phys. 92 (1991) 273.
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