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Abstract. The fluid-structure interaction simulation of detonation- and
shock-wave-loaded fracturing thin-walled structures requires numerical
methods that can cope with large deformations as well as topology
changes. We present a robust level-set-based approach that integrates
a Lagrangian thin shell finite element solver with fracture and fragmen-
tation capabilities with an Eulerian Cartesian detonation solver with
optional dynamic mesh adaptation. As an application example, the rup-
ture of a thin aluminum tube due to the passage of an ethylene-oxygen
detonation wave is presented.

1 Introduction

The Center for Simulation of Dynamic Response of Materials at the California
Institute of Technology has developed a virtual test facility (VTF) for studying
the three-dimensional dynamic response of solid materials subjected to strong
shock and detonation waves propagating in fluids [7]. The fluid flow is simulated
with a Cartesian finite volume upwind method in Eulerian coordinates that con-
siders the solid as a moving embedded body by utilizing a ghost-fluid approach
(see Sec. 2). In the present paper, the fracturing thin-walled solid is modeled as a
Kirchhoff-Love type thin-shell in Lagrangian coordinates. The finite element dis-
cretization of the underlying energy functional is accomplished with subdivision
finite elements (see Sec. 3).

The evolving shell geometry is implicitly represented on the Cartesian fluid
mesh by a scalar level set function, which stores the unsigned distance to the solid
surface. As the solid deforms, the level set function is updated on-the-fly by a
highly efficient auxiliary algorithm based on geometric characteristic reconstruc-
tion and scan conversion (see Sec. 4). In the VTF, we apply a loosely coupled
temporal splitting method for updating the boundary’s position and velocity be-
tween time steps. The fluid-structure coupling approach and its implementation
on distributed memory computing platforms are briefly described in Sec. 5. As
a large-scale three-dimensional computational example, we present in Sec. 6 the
simulation of the rupture of a thin aluminum tube due to an internal detonation
wave arising from the combustion of an ethylene-oxygen mixture. Simulations of
this type will be compared directly to available experimental results [1] and will
serve as a validation case for the VTF.



2 Eulerian Detonation Solver

The governing equations of detonation wave propagation in gases are the invis-
cid Euler equations [9]. Throughout this paper, we consider only the simplified
case of a single exothermic chemical reaction A — B with a progress variable
Y corresponding to the mass fraction ratio between the partial density of the
reactant A and the total density p, i.e. Y = pa/p. The governing equations of
the hydrodynamic model are

Op+  V-(pu) =0, Olpu)+V-(pu®@u)+Vp=0, 1)
W(pE)+ V- ((pE+pu) =0, o(Yp)+ V- -(Ypu) =4¢.

Herein, w is the velocity vector and E the specific total energy. The hydrostatic
pressure p is given by p = (y—1)(pE— 3 pu”u—pY q) with v denoting the ratio of
specific heats and ¢ the heat release due to the chemical reaction per unit mass.
A one-step reaction would typically be modeled with an Arrhenius law such as
= —kYpexp(—Eap/p) [9], but in the specific case considered here, we utilize
the constant volume burn model suggested by Mader [10]. This model neglects
the detailed chemical depletion, and therefore the internal detonation structure,
but ensures the right propagation speed and the correct state in chemical equi-
librium at all grid resolutions. The model is intended to be applied together
with the fractional step method that numerically decouples chemical reaction
and hydrodynamic transport. First, the homogeneous system (1) is advanced at
a full time step, then the reactant density pa, pressure p, and total energy F
are modified locally in each cell; the total density p and the velocity vector w
remain unaltered. The algorithm for the detonation model reads:
Vi=ph Vor=ppt, Ve i=pes, Y= 1= (V = Vo) /(Voy — Vo)
fo<Y'<landY >10"8

ifY <Y and Y’ < 0.9 then Y’ :=0

if Y’ < 0.99 then p' := (1 — Y')pcy else p' :=p

pa=Y'p, E:=p'[(p(y = 1)) + Y'qo + u”u
In the latter, the index 0 indicates the unreacted state (assumed to be constant),
while CJ refers to the equilibrium values that can be calculated in advance
following Chapman-Jouguet theory [9,6] for a given detonation velocity.

For the shock-capturing finite volume upwind scheme, we utilize a straightfor-
ward extension of the flux-vector splitting method by Van Leer (cf. [6]). Second-
order accuracy in smooth solution regions is achieved with the MUSCL-Hancock
variable extrapolation technique [12]. Geometrically complex moving boundaries
are incorporated in the upwind scheme by using some of the finite volume cells
as ghost cells for enforcing immersed moving wall boundary conditions [8]. The
boundary geometry is mapped onto the Cartesian mesh by employing a scalar
level set function ¢ that stores the unsigned distance to the boundary surface and
allows the efficient evaluation of the boundary outer normal in every mesh point
as n = —V¢/|V¢|. Note that for topologically closed boundary surfaces the
signed distance may be used instead of the unsigned distance [5]. A cell is con-
sidered to be a valid fluid cell, if the distance at the cell midpoint satisfies the con-
dition ¢ > h/2 and as an exterior ghost cell otherwise. The mesh received from



the shell solver corresponds to a two-dimensional manifold surface mesh (cf. Sec.
3) and the utilization of condition ¢ > h/2 is a straightforward, unambiguous
solution to achieve the mandatory thickening of this mesh by the shell thickness
h. The contour line ¢ = h/2 effectively represents the embedded boundary for
the fluid solver (depicted as dotted line around shell elements in Fig. 1). The hy-
drodynamic load on each shell element is evaluated as the difference between the
approximated pressure values at ¢ = h/2 in the positive and negative direction
of each element’s normal, i.e. p' :=pt —p~.

For the governing equations (1), the bound- T
ary condition at a rigid wall moving with ve- -
locity w is u - n = w - n. Enforcing the latter
with ghost cells, in which the discrete values are
located at the cell centers, requires the mirror-
ing of the primitive values p, u, p, pa across
the embedded boundary. The normal velocity
in the ghost cells is set to 2w - n — u - n)n,
while the mirrored tangential velocity remains
unmodified. Mirrored values are constructed by  Fig. 1. Ghost cells (shaded gray)
calculating spatially interpolated values in the around shell elements and con-
point & = x + 2¢n from neighboring interior struction of mirrored values.
cells. We employ a dimension-wise linear interpolation for this operation, but it
has to be emphasized that directly near the boundary the number of interpolants
needs to be decreased to ensure the monotonicity of the numerical solution. This
property is essential in simulating hyperbolic problems with discontinuities, like
detonation waves. Figure 1 also highlights the necessary reduction of the interpo-
lation stencil for some exemplary cases. The interpolation locations are indicated
by the origins of the arrows normal to the contour line that defines the embedded
boundary. After the application of the numerical scheme, cells that have been
used to impose internal boundary conditions are set to the entire state vector
of the nearest cell in the fluid interior. This operation ensures proper values in
case such a cell becomes a regular interior cell in the next step due to bound-
ary movement. The consideration of w in the ghost cells guarantees that the
embedded boundary propagates at most one cell in every time step.

In order to supply a fine local temporal and spatial resolution efficiently, the
finite volume scheme described above has been incorporated into a block-oriented
hierarchical mesh adaptation method. The numerical scheme is then applied as
a single-grid routine in a loop over all subgrids (see [6] or [7] for details).

3 Lagrangian Thin-Shell Solver

The Kirchhoff-Love type thin-shell model applied in this study takes the mem-
brane as well as bending response of the surface into account, and has been
discretized with subdivision finite elements [2,3]. The underlying kinematic as-
sumptions allow for arbitrarily large displacements as well as rotations of the
shell. Fracture initiation and propagation is considered as a progressive failure
phenomenon in which the separation of the crack flanks is resisted by cohesive



tractions. The relationship between the crack-opening displacements and the
tractions is given by a cohesive model. Cohesive interface elements are inserted
at inter-element edges and constrain the opening of the crack flanks to the de-
formation of the shell middle surface and its normal. This approach allows for
fracture in an in-plane or tearing mode, a shearing mode, or a “bending of hinge”
mode.

To kinematically describe a fractured thin-shell as sketched in Fig. 2, we
consider a shell of uniform thickness h occupying an undeformed configuration V.
The position vector @ of a material point on the

undeformed shell body is assumed to be
F=7+0°R 2) \ﬂ
with —h/2 < 63 < h/2. The position vec- \lr

tor of the shell middle surface is denoted by

x and its out-of-surface unit normal by m. In

other words, the shell middle surface represents

a two-dimensional manifold in IR®. The defor- Fig-2. Fractured shell body:
mation mapping ¢ maps the shell body into the Opposite crack flanks and corre-
deformed configuration V' and is discontinuous sponding normals.

across the crack n _ 3
[e] =" — ¢~ = [x] + 6%[n] (3)

where the superscripts + and — refer to the opposing crack flanks. Further,
the first term describes the discontinuity of the deformation of the middle shell
surface, and the second term the discontinuity in the shell out-of-surface normal.
The discontinuities in the deformations can also be interpreted as the opening
displacement of the crack.

A standard semi-inverse approach is followed for obtaining the shell equi-
librium equations in weak from. To this end, the assumed reduced kinematic
equations for the shell body (Equations (2) and (3)) are introduced into the
conventional virtual work expression for the three-dimensional body. As pre-
viously mentioned, we consider fracture as a gradual separation phenomenon,
resisted by cohesive tractions. Consequently, the internal virtual work expres-
sion contains the virtual work of the cohesive interface (6II¢ i) in addition to
the virtual work of the bulk material (617 int)

5H8,int + 6HC,int - 6Hext =0 (4)

with _ _
h/2 . h/2 o
6T s int = / / P :SF ud0®d2 , 6 = / / T - [] pdo?dT
2 J—h/2 TcJ—h/2

where P is the first Piola-Kirchhoff stress tensor, T the related traction vector at
the cohesive surface, and F' the deformation gradient. The virtual work expres-
sion for the bulk material is integrated over the undeformed shell middle surface
12 and for the cohesive interface over the crack path I'c. The scalar factor u
accounts for the curvature of the shell in the volume computation [3].



Next, we briefly outline the discretization of the governing equation (4). A de-
tailed presentation of the used subdivision finite element discretization technique
can be found in [2] and [3]. In this approach, the reference (Z) and deformed (z)
shell surfaces are approximated using smooth subdivision surfaces belonging to
the Sobolev space Hy with square-integrable curvatures. The subdivision inter-
polation within one element is accomplished with shape functions, which have
support on the element as well as on the one-ring of neighboring elements. The
overlapping local subdivision interpolants, each defined over one patch, together
lead to a global interpolant with square-integrable curvatures. In the presence of
fracture, the smoothness and/or continuity of the interpolation has to be relaxed
and the subdivision interpolant needs to be modified (see [4] for details).

Once fracture nucleates along an element edge, the element patches on the
left and right side of the cracked edge interact only through cohesive tractions.
The cohesive tractions are self-balanced internal forces derived from a cohesive
fracture model [4]. In this model, the opening displacement [¢] plays the role of
a deformation measure while the traction T' is the conjugate stress measure.

Finally, the inelastic behavior of the bulk material, i.e. the relation between
P and F, is described with a conventional J; plasticity model with isotropic
power-law hardening. The rate-dependent behavior is described with a power
viscosity law and constant rate sensitivity.

4 Efficient Level Set Evaluation

In Sec. 2, we have sketched the concept of employing a distance function to
represent a complex embedded boundary on a Cartesian mesh. While distance
functions are easily prescribed for single elementary geometric objects, their eval-
uation can be cumbersome for complex shapes. In coupled Eulerian-Lagrangian
simulations, this complex shape is defined by the deforming shell surface mesh.

One can efficiently compute the distance on a grid by solving the eikonal
equation with the method of characteristics and utilizing polyhedron scan con-
version [11]. For a given grid point, the relevant closest point on the triangular
mesh lies on one of the primitives (faces, edges and vertices) that comprise the
surface. The characteristics emanating from each of these primitives form poly-
hedral shapes. Such a characteristic polyhedron contains all of the points which
are possibly closest to its corresponding face, edge or vertex. The closest points
to a triangle face must lie within a triangular prism defined by the face and
its normal; the closest points to an edge lie in a cylindrical wedge defined by
the line segment and the normals to the two incident faces (see Fig. 3 for face
(a) and edge (b) polyhedra as an example). Analogously, polygonal pyramids
emanating from the vertices are also possible (not shown). We then determine
the grid points that lie inside a characteristic polyhedron with polyhedron scan
conversion. The polyhedron is first sliced along each sheet of the grid lattice
to produce polygons, cf. Fig. 4. Simple geometric formulas are finally used to
calculate the distance.

By utilizing the outlined techniques, and evaluating the distance exactly only
within a small distance around the surface, a highly efficient algorithm can be
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Fig. 4. Scan conversion of a polygon
Fig. 3. The characteristic polyhedra for  in 2-D and slicing of a polyhedron to
faces and edges of an icosahedron. form polygons.

formulated that has linear computational complexity both in the number of
Cartesian mesh points and the surface triangles [11,7].

5 Fluid-Structure Coupling

The explicit fluid and solid solvers are weakly coupled by successively applying
appropriate boundary conditions in a time-operator splitting technique. In the
case of inviscid flows, the compatibility conditions are simply the continuity of
the velocity component normal to the embedded boundary w, in solid (S) and
fluid (F), i.e. u5 = uf, and the continuity of the normal component of the
solid’s Cauchy traction vector, p° = (on)n with o = 1/det(F)FP , and the
hydrodynamic pressure p’’, i.e p° = p. We use the update algorithm of Fig. 5 to
implement these conditions numerically. After evaluat- update ¢(t)

ing the distance function ¢ for the currently available +/— s

shell surface mesh, the embedded wall boundary ve- Wrp =Y ®)

. . . . update_fluid( At )
locities for the fluid solver are set to the solid veloci- s,
ties in the nearest shell element midplane. The same po=D (t.+ At)

. . . . update_solid( At)
velocity w is enforced in the fluid on upper (7) and fim b4 A
lower (7) side of each element. After setting embed- ’
ded rigid wall boundary conditions as sketched in Sec. Fig.5. Basic coupling
2 and the fluid update, a new hydrodynamic pressure algorithm.
load p := p* —p~ on each shell element is derived (compare Fig. 1). With these
new boundary conditions, the cycle is completed by advancing the solid by At,
which in practice is typically done by taking multiple, smaller time steps in the
solid solver to effectively accommodate the more restrictive stability condition
in the solid. An extended version of above coupling scheme compatible with the
optional fluid mesh adaptation method with recursive time step refinement has
also been developed [7].

In our current implementation, fluid and shell solver are parallelized sepa-
rately for distributed memory machines using rigorous domain decomposition
methods. The two independent solvers run on two disjoint set of processors. To
facilitate the efficient exchange of the distributed fluid-shell boundary informa-
tion (surface mesh and velocities to the fluid; pressure loadings to the solid)
we have implemented a non-blocking high-level communication library that de-
termines the necessary point-to-point communication patterns by intersecting
Cartesian bounding boxes enclosing the local domains.
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Fig.6. Coupled simulation of detonation-driven rupture of a thin aluminum tube.
Two snapshots of the fracturing tube with velocity iso-contours (lower row); cuts
through the fluid domain show the resulting hydrodynamic venting (upper row).

6 Detonation-driven Fracture Example

We present one representative simulation that corresponds to an experimental
configuration studied by Chao [1]. The setup consists of a detonation tube of
1.52m, filled with CoHy + 3 O3 at po = 180 kPa and py = 2.33kg/m?, to which
a thin-walled aluminum (Al6061-T6) test tube is attached. The test specimen
has a length of 45.7cm, an inner radius of 1.975cm, and a wall thickness of
0.89 mm. While the lower end of the entire device is closed, a thin diaphragm
seals the upper end. To ensure a reproducible fracture pattern Chao’s specimen
has a central longitudinal notch of 6.32 cm at the middle, which is modeled as
an initial crack in the computations.

The mixture is thermally ignited at the closed end. A combustion wave arises
that has the characteristics of a freely propagating self-sustained detonation
when it enters the test specimen. Utilizing the full GRI 3.0 reaction mech-
anism Chapman-Jouguet theory predicts its velocity to be D¢y = 2404m/s
and an adiabatic mixture coefficient for the fully reacted state of 1.24 [1]. For
the simplified detonation model of Sec. 2, we choose 7 = 1.24 and evaluate
qo ~ 5.20MJ/kg, pcy ~ 6.10MPa, and pcy ~ 4.16kg/m>. A one-dimensional
simulation is used to calculate the flow field at the moment the detonation
enters the specimen. The one-dimensional data is then taken as initial con-
ditions for the three-dimensional reactive Euler equations. Fig. 7 shows the
detonation propagation in the one-dimensional case and the development of a
Taylor rarefaction wave due to the closed end
is clearly visible. To model this wave correctly,
the Cartesian fluid domain also encompasses
0.92m of the downstream end of the deto-
nation tube as a static embedded boundary.
Fig. 6 shows computational results of a typi-
cal coupled fluid-structure interaction simula- |
tion with a shell mesh of 8665 elements and a 0 05 Sisance 2 25
uniform Cartesian fluid mesh of 40 x 40 x 725  Fig.7. 1d detonation propaga-
cells that required =~ 900h CPU on 27 nodes tion through tube and specimen.
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of a Pentium-4-2.4 GHz dual processor system (21 fluid and 33 solid processes).
1300 coupled time steps with fixed step size to a final time of 0.26 ms have been
calculated (20 solid solver sub-steps in each fluid time step). The left graphic
of Fig. 6 shows the beginning of the crack opening at ¢ ~ 0.15ms (detonation
propagating from left to right). The snapshot on the right shows the rupture
at the final time ¢ = 0.26 ms. The venting of high pressure reacted gas out of
the tube is clearly visible. During this simulation, level set evaluation and finite
volume scheme (excluding parallel synchronization operations) have about the
same computational costs on each fluid processor.

7 Conclusions

A parallel level-set-based fluid-structure coupling method for the time-accurate
simulation of thin flexible shells dynamically responding to gaseous detonation
waves has been described. The approach has been demonstrated to handle ar-
bitrary topology changes and large deformations and is computationally very
efficient. Its implementation in the software framework “Virtual Test Facility”
is freely available for research purposes (cf. http://www.cacr.caltech.edu/asc).
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