
Engineering with Computers manuscript No.
(will be inserted by the editor)

A Virtual Test Facility for the Efficient Simulation of Solid Material
Response under Strong Shock and Detonation Wave Loading

Ralf Deiterding1, Raul Radovitzky2, Sean P. Mauch1, Ludovic Noels2,3?, Julian C. Cummings1,
Daniel I. Meiron1

1 California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125
2 Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139
3 University of Liège, 1 Chemin des Chevreuils, 4000 Liège Belgium

Received: date / Revised version: date

Abstract A Virtual Test Facility (VTF) for studying
the three-dimensional dynamic response of solid mate-
rials subject to strong shock and detonation waves has
been constructed as part of the research program of the
Center for Simulating the Dynamic Response of Ma-
terials at the California Institute of Technology. The
compressible fluid flow is simulated with a Cartesian fi-
nite volume method and treating the solid as an em-
bedded moving body, while a Lagrangian finite element
scheme is employed to describe the structural response
to the hydrodynamic pressure loading. A temporal split-
ting method is applied to update the position and ve-
locity of the boundary between time steps. The bound-
ary is represented implicitly in the fluid solver with a
level set function that is constructed on-the-fly from the
unstructured solid surface mesh. Block-structured mesh
adaptation with time step refinement in the fluid allows
for the efficient consideration of disparate fluid and solid
time scales. We detail the design of the employed object-
oriented mesh refinement framework AMROC and out-
line its effective extension for fluid-structure interaction
problems. Further, we describe the parallelization of the
most important algorithmic components for distributed
memory machines and discuss the applied partitioning
strategies. As computational examples for typical VTF
applications, we present the dynamic deformation of a
tantalum cylinder due to the detonation of an interior
solid explosive and the impact of an explosion-induced
shock wave on a multi-material soft tissue body.

1 Introduction

The Virtual Test Facility (VTF) is a software environ-
ment for coupling solvers for compressible computational

Send offprint requests to: R. Deiterding,
ralf@cacr.caltech.edu

? Postdoctoral scholar at the FNRS

fluid dynamics (CFD) with solvers for computational
solid dynamics (CSD). The CFD solvers facilitate the
computation of flows with strong shocks as well as fluid
mixing. The CSD solvers provide capabilities for simu-
lation of dynamic response in solids such as large plas-
tic deformations, fracture and fragmentation. In addi-
tion, the VTF can be used to simulate highly coupled
fluid-structure interaction problems, such as the high
rate deformation of metallic solid targets forced by the
loading from the detonation of energetic materials, or
the rupture and fragmentation of brittle materials un-
der shock wave impact. At present, all VTF solvers use
time-explicit shock-capturing schemes.

In order to implement fluid-structure coupling in the
VTF, we apply a loosely coupled, partitioned approach.
The technique operates as follows: one assumes disjoint
fluid and solid domains and that the interaction takes
place only at the fluid-solid interface. In this way, one
can apply algorithms that are intrinsically suited for sim-
ulation of phenomena such as shock propagation, deto-
nation or fluid mixing in the fluid solver, while algo-
rithms similarly optimized for phenomena such as high-
rate plastic deformation or fracture can be employed in
the solid solver. For example, a Lagrangian representa-
tion is most suitable to account numerically for large
solid deformations, contact and fracture, while the gov-
erning equations of compressible fluid motion are most
effectively solved in an Eulerian frame of reference [1]. In
the loose fluid-structure coupling adopted, the informa-
tion exchange is reduced to communicating the veloci-
ties and the geometry of the solid surface to the Eulerian
fluid and imposing the hydrostatic pressure onto the La-
grangian solid as a force acting on its exterior [1,2,3,4,
5,6,7]. This approach offers several advantages. Firstly,
it allows for solver reuse (see [8] or [2] for details on the
idea of modularization). Secondly, it becomes straight-
forward to take advantage of recent advances in multi-
scale constitutive modeling to describe the dynamic re-
sponse of both solid and fluid. Such modeling typically

2 Ralf Deiterding et al.

also employs a Lagrangian description for solids and an
Eulerian description for the fluid.

A key issue that arises with the proposed approach
is how to represent the evolving surface geometry on the
Eulerian fluid mesh. The application of body-conforming
meshes is somewhat cumbersome, because the fluid equa-
tions first need to be cast into a local arbitrary La-
grangian-Eulerian (ALE) frame of reference [9]. At each
step, the mesh topology would have to be reconstructed
and the solution re-interpolated. While this is possi-
ble (and successfully implemented in many present-day
codes), the issues of mesh tangling and the requirements
of frequent re-meshing in the case of large deformations
remain a challenge. The need to re-mesh is also an in-
herent bottleneck in massively parallel simulations [6].

An alternative to the use of body-aligned fluid grids
is the application of Cartesian meshes with immersed or
embedded irregular boundaries. Here, there are two basic
approaches: “cut-cell” techniques that construct smaller
cells by intersecting the Cartesian mesh exactly with the
(triangulated) boundary and techniques that “diffuse”
the boundary within one cell [10]. Cut-cell methods have
the advantage that they can represent accurately the
boundary flux and thus facilitate the implementation of
discretely conservative fluid solvers. However, the pro-
posed numerical circumventions of the severe time step
restriction in time-explicit schemes [11,12], which can re-
sult from very small cells created by the boundary inter-
section, are logically quite complicated. Most approaches
have not yet been extended successfully to three spa-
tial dimensions even for pure fluid flow problems. In the
VTF, we therefore employ a diffused boundary technique
in which some interior cells are used directly to enforce
the embedded boundary conditions in the vicinity of
the solid surface [13,4]. This has been called the “ghost
fluid” approach. One advantage of this approach is that
the numerical stencil is not modified, thus ensuring op-
timal parallel scalability. We minimize conservation er-
rors as well as possible numerical “staircase” artifacts at
the embedded boundary by using block-structured dy-
namic adaptation of the fluid mesh. As the solid deforms,
the solid-fluid boundary is represented implicitly with a
scalar level set variable that is updated on-the-fly using
an efficient algorithm described in more detail below.
An important additional advantage of this approach is
the ability to cope with topological transitions such as
fracture or penetration.

The present paper details the implementation of the
VTF approach and also describes its application to fluid-
solid interaction problems wherein detonation and shock
waves impinge on thick three-dimensional solid materi-
als. An extension of the basic, non-adaptive fluid-solid
coupling algorithm used herein to thin, open structures
has recently been presented in [14]. In Sec. 2, a Cartesian
dynamically adaptive finite volume fluid solver for Euler
equations with one-step chemistry is described. We de-
tail the design of the underlying mesh refinement frame-

work and discuss its parallelization. Section 3 outlines
the parallel Lagrangian finite element solver for solid
materials subjected to high-intensity shock loadings. In
Sec. 4, we describe a highly efficient algorithm to trans-
form a triangulated surface mesh into a signed distance
function on a hierarchical Cartesian mesh as a prerequi-
site for coupling. The fluid-structure interaction method-
ology, highlighting particular its incorporation into the
adaptive fluid mesh refinement framework, and an effi-
cient inter-solver communication library are detailed in
Sec. 5. Section 6 provides two three-dimensional compu-
tational examples. In Sec. 6.1, we simulate the impact
event of a strong hydrodynamic shock wave on a body
comprised of soft-tissue; in Sec. 6.2 the propagation of
a detonation wave in HMX through a plastic tantalum
cylinder is described. Both computations were run on
distributed memory machines and we comment briefly
on the overall computational efficiency of the approach.

2 Eulerian Fluid Dynamics

In this section, we are concerned with the construction
of an Eulerian fluid solver framework suitable for effi-
cient fluid-structure coupling. Although the presentation
is tailored to the Euler equations with simple one-step
reaction, the concepts are equally applicable to general
conservation laws with arbitrary source terms. Within
the Center for Simulating the Dynamic Response of Ma-
terials at the California Institute of Technology, the same
framework is also used successfully with solvers for the
compressible Favre-averaged Navier-Stokes equations
with a large-eddy turbulence model [15] and for detona-
tion simulation in thermally perfect gas mixtures with
detailed chemical kinetics [16,17,18,19,20].

2.1 Governing Equations

In order to model detonation waves in solid energetic
materials, we utilize the single-phase model proposed
by Fickett and Davis [21], which has also been used by
Clarke et al. [22] to evaluate numerical methods for det-
onation simulation. We assume a single chemical reac-
tion A −→ B that is modeled by a progress variable
λ, which corresponds to the mass fraction ratio between
the density of the product B and the total density ρ, i.e.
λ = ρB/ρ. The governing equations of the model read

∂tρ + ∇ · (ρu) = 0 , (1)
∂t(ρu) + ∇ · (ρu⊗ u) +∇p = 0 , (2)
∂t(ρE) + ∇ · ((ρE + p)u) = 0 , (3)

∂tλ + u · ∇λ = ψ . (4)

Here, u is the velocity vector and E the specific total
energy. The hydrostatic pressure p is given by

p = (γ − 1)(ρE − 1
2
ρuT u + ρλq) (5)

A Virtual Test Facility for the Simulation of Solid Material Response under Strong Shock Wave Loading 3

with γ denoting the ratio of specific heats and q the heat
release due to the chemical reaction per unit mass. The
reaction itself is modeled by the simple rate function

ψ =
2
TR

(1− λ)1/2 . (6)

In (6), TR denotes a typical time associated with the
reaction, in which the depletion from A to B is complete.
It is worth mentioning that the above model includes the
Euler equations for a single polytropic gas as (1) to (3)
and (5) for ψ ≡ 0 and q ≡ 0, which is the appropriate
model for purely hydrodynamic shock wave propagation
(cf. Sec. 6.1).

2.2 Cartesian Finite Volume Method with Embedded
Boundaries

Following Clarke et al. [22], we apply the method of
fractional steps to decouple the chemical reaction and
hydrodynamic transport numerically. The homogeneous
system of (1) to (4) and the scalar ordinary differential
equation ∂tλ = ψ(λ) are solved successively with the
data of the preceding step as initial conditions. As the
homogeneous system (1) - (4) is a hyperbolic conserva-
tion law that admits discontinuous solutions (cf. [22]),
we use a time-explicit finite volume discretization that
achieves a proper upwinding in all characteristic fields.
The scheme is based on a straightforward generaliza-
tion of the Roe scheme for the purely hydrodynamic
Euler equations (1) to (3) and is extended to a multi-
dimensional Cartesian scheme via the method of frac-
tional steps (cf. [23]). To circumvent the intrinsic prob-
lem of unphysical total densities and internal energies
near vacuum due to the Roe linearization (cf. [24]), the
scheme has the possibility to switch to the simple, but
extremely robust Harten-Lax-Van Leer (HLL) Riemann
solver [17,18,19]. The MUSCL-Hancock variable extrap-
olation technique of Van Leer [23] is employed to achieve
second-order accuracy in regions where the solution is
smooth.

Geometrically complex moving boundaries are con-
sidered within the Cartesian method outlined above by
utilizing some of the finite volume cells as ghost cells
to enforce immersed boundary conditions [25,10]. The
ghost cell values are set immediately before the original
numerical update to model moving embedded walls. The
boundary geometry is mapped onto the Cartesian mesh
by employing a scalar level set function φ that stores
the signed distance to the boundary surface and allows
the efficient evaluation of the boundary outer normal in
every mesh point as n = −∇φ/|∇φ| [26]. In coupled
Eulerian-Lagrangian simulations, φ is updated on-the-
fly by calling the closest-point-transform algorithm de-
scribed in detail in Sec. 4. A cell is considered to be a
valid fluid cell within the interior, if the distance φ in
the cell midpoint is positive, and is treated as exterior

Figure 1 Interpolation from interior cells to construct mir-
rored values to be used within internal ghost cells (gray).

otherwise. The unavoidable staircase approximation of
the boundary with this approach is alleviated by using
the dynamic mesh adaptation technique described in the
next section to also refine the Cartesian mesh appropri-
ately along the boundary.

For the system of equations (1) to (4), the bound-
ary condition at a rigid wall moving with velocity w is
u·n = w·n. Enforcing the latter with ghost cells requires
the mirroring of the primitive values ρ, u, p, λ across
the embedded boundary and the velocity modification
u′ = 2 ((w − u) · n)n+u within the ghost cells. We de-
rive mirrored values in a ghost cell center x by calculat-
ing spatially interpolated values at the point x̃ = x+2φn
from neighboring interior cells. For instance, in two spa-
tial dimensions a bilinear interpolation between (usu-
ally) four adjacent cell values is employed, but directly
near the boundary the number of cells contributing to
the interpolation needs to be decreased to preserve the
monotonicity of the numerical solution. Figure 1 high-
lights the reduction of the interpolation stencil for some
exemplary cases close to the embedded boundary. The
interpolation locations are indicated by the origins of the
arrows normal to the complex boundary (dotted).

After the application of the numerical scheme, the
cells that have been used to impose the internal bound-
ary conditions are set to the entire state vector of the
nearest cell in the interior. This operation achieves a con-
stant value extrapolation and ensures proper values in
case such a cell becomes a regular interior cell in the next
step due to boundary movement. Note that the bound-
ary velocity w gets automatically considered through
the velocity modification in the internal ghost cells and
the usual stability condition for time-explicit methods
for system (1) to (4) also ensures that the embedded
boundary propagates at most one cell further in every
time step.

2.3 Structured Adaptive Mesh Refinement

In order to supply the required temporal and spatial
resolution efficiently, we employ the structured adap-
tive mesh refinement (SAMR) method after Berger and
Colella [27], which is tailored especially for hyperbolic

4 Ralf Deiterding et al.

Figure 2 The AMR method creates a hierarchy of rectan-
gular subgrids.

conservation laws on logically rectilinear finite volume
grids. Instead of replacing single cells by finer ones, as is
done in cell-oriented refinement techniques, the Berger-
Collela SAMR method follows a patch-oriented approach.
Cells being flagged by various error indicators (shaded
in Fig. 2) are clustered with a special algorithm [28]
into non-overlapping rectangular grids. Refinement grids
are derived recursively from coarser ones and a hier-
archy of successively embedded levels is thereby con-
structed (cf. Fig. 2). All mesh widths on level l are rl-
times finer than on level l − 1, i.e. ∆tl := ∆tl−1/rl and
∆xk,l := ∆xk,l−1/rl with rl ≥ 2 for l > 0 and with
r0 = 1, and a time-explicit finite volume scheme will (in
principle) remain stable on all levels of the hierarchy.

The numerical scheme is applied on level l by calling
a single-grid routine in a loop over all subgrids. The sub-
grids get computationally decoupled by employing addi-
tional ghost cells around each computational grid. Three
different types of ghost cells have to be considered: Cells
outside of the root domain are used to implement phys-
ical boundary conditions. Ghost cells overlaid by a grid
on level l have a unique interior cell analogue and are
set by copying the data value from the grid, where the
interior cell is contained (synchronization). On the root
level no further boundary conditions need to be consid-
ered, but for l > 0 internal boundaries can also occur.
They are set by a conservative time-space interpolation
from two previously calculated time steps of level l − 1.

Besides a general tree data structure that stores the
topology of the hierarchy (cf. Fig. 2), the SAMR method
requires at most two regular arrays assigned to each sub-
grid. They contain the discrete vector of state for the ac-
tual and updated time step. The regularity of the data
allows high performance on vector and super-scalar pro-
cessors that allow cache optimizations. Small data ar-
rays are effectively avoided by leaving coarse level data
structures untouched when higher level grids are cre-
ated. Values of cells covered by finer subgrids are sub-
sequently overwritten by averaged fine grid values. This
operation leads to a modification of the numerical stencil
on the coarse mesh and requires a special flux correction
in cells abutting a fine grid. The correction replaces the
coarse grid flux along the fine grid boundary by a sum

 10

 100

 1000

 256 128 64 32 16 8 4

se
co

nd
s

/ t
im

e
st

ep

CPUs

Figure 3 Representative AMROC scale-up test for fixed
problem size.

of fine grid fluxes and ensures the discrete conservation
property of the hierarchical method (at least for purely
Cartesian problems without embedded boundaries; see
[27] or [19] for details).

2.4 Parallel Implementation

Up to now, various reliable implementations of the
SAMR method for single processor computers have been
developed. Even the usage of parallel computers with
shared memory is straightforward, because time-explicit
methods allow the parallel calculation of the grid-wise
numerical update [28]. But the question of an efficient
parallelization strategy becomes more delicate for dis-
tributed memory architectures, because on such ma-
chines the costs for communication cannot be neglected.
Due to the technical difficulties of implementing dynam-
ical adaptive methods in distributed memory environ-
ments only a few parallelization strategies have been
considered in practice to date (cf. [29,30]).

Parallel SAMR in the Virtual Test Facility at the
California Institute of Technology is provided generically
by the AMROC (Adaptive Mesh Refinement in Object-
oriented C++) framework [31]. AMROC has been paral-
lelized very effectively for distributed memory machines
[32] and can be used on all systems that provide the MPI
library. The parallelization strategy is a rigorous domain
decomposition approach that partitions the SAMR hier-
archy from the root level on. The key idea is that all
higher level domains are required to follow this “floor
plan”. A careful analysis of the SAMR algorithm uncov-
ers that the only parallel operations under this paradigm
are ghost cell synchronization, redistribution of the hier-
archical data and the application of the previously men-
tioned flux correction terms. Interpolation and averag-
ing, and, in particular, the calculation of the flux cor-
rections remain strictly local [19]. Currently, we employ
a generalization of Hilbert’s space-filling curve [33] to
derive load-balanced root level distributions at runtime.
The entire SAMR hierarchy is considered by project-
ing the accumulated work from higher levels onto the
root level cells. Although rigorous domain decomposi-
tion does not lead to a perfect balance of workload on

A Virtual Test Facility for the Simulation of Solid Material Response under Strong Shock Wave Loading 5

single levels, good scale-up is usually achieved for mod-
erate CPU counts. Figure 3 shows a representative scal-
ability test for a three-dimensional spherical shock wave
problem for the Euler equations of a single non-reactive
gas (Equations (1) - (3) and (5)). The test was run on
the ASC Linux cluster (ALC) at Lawrence Livermore
National Laboratories that connects Pentium-4-2.4 GHz
dual processor nodes with a Quadrics Interconnect. The
base grid has 323 cells and two additional levels with re-
finement factors 2 and 4. The adaptive calculation uses
approximately 7.0 M cells in each time step instead of
16.8 M cells in the uniform case. The calculation on 256
CPUs employs between 1,500 and 1,700 subgrids on each
level. Displayed are the average costs for each root level
time step, which involves two time steps on the middle
level and eight on the highest. All components of the dy-
namically adaptive algorithm, especially regridding and
parallel redistribution, are active so that realistic results
are obtained. Although we utilize a finite volume scheme
in Fortran 77 within a C++ framework with full com-
piler optimization, the fraction of the time spent in this
Fortran routine is 90.5 % on four and decreases to only
74.9 % on 16 CPUs. Hence, Fig. 3 shows a reasonable
scale-up for at least up to 64 CPUs. We are currently re-
searching scalability strategies that will allow full scale-
up to thousands of processors.

2.5 Design of the AMROC Framework

A salient feature of AMROC compared to other available
SAMR implementations, e.g. [29,34], is the realization of
object-oriented framework concepts in C++ on all levels
of software design. This allows for effective code re-use in
implementing parallel SAMR algorithms and extensive
capability for customization through subclass derivation.

In block-structured dynamically adaptive codes, three
abstraction levels can be identified. At the top level, a
particular physical simulation problem is formulated by
providing a numerical scheme, by setting boundary and
initial conditions, and by specifying interpolation (pro-
longation) and averaging (restriction) methods for the
inter-level transfer operations. Characteristic of block-
structured methods is that at this level only single-patch
routines need to be provided. In AMROC, SAMR imple-
mentation classes call the single-patch routines through
abstract class interfaces. For a fully implemented SAMR
algorithm, the system is used as an application frame-
work invoked by a generic main program. Classes imple-
menting SAMR algorithms and their auxiliary compo-
nents operating on and manipulating complex hierarchi-
cal data make up the second level. A comparison of typ-
ical SAMR algorithms, e.g. the Berger-Colella technique
for time-explicit finite volume schemes (cf. Sec. 2.3) with
geometric adaptive multigrid methods for implicit dis-
cretizations, reveals that the SAMR auxiliary compo-
nents show great similarity and can easily be re-used.

+set_patch()

NumericalScheme

+set_patch_boundary()

BoundaryConditions

+set_patch()

InitialConditions

+next_step()

+advance_level()

+update_level()

+regrid()

HypSAMRSolver

1

1

1

1

+restrict_patch()

+prolong_patch()

LevelTransfer

+find_boxes()

Clustering

+flux_correction()

+add_fine_fluxes()

+add_coarse_fluxes()

Fixup

+recreate_patches()

GridFunction

dim:int, data_type

1

+VectorOfState1

+set_new_boxes()

+redistribute_hierachy()

GridHierarchy

-follows distribution0..*

1

Patch

dim:int, data_type

1 0..*

Box

1 0..*

0..1

1

TimeStepControler

1

1

+evaluate()

Criterion

+flag_patch()

Flagging

0..*

1

1
+Flags

1

0..1

1

1

0..1

1

-dF

1..*

1

1

0..1

1

0..1

1

Figure 4 UML class diagram for the most important AM-
ROC components implementing Cartesian Berger-Collela-
type SAMR.

In AMROC, components such as the flagging of cells
for refinement depending on various criteria, the clus-
tering of flagged cells into rectangular regions, inter-level
data transfer and flux correction (fixup) reside in clearly
separated classes. This is highlighted in Fig. 4 which
displays the most important AMROC classes and their
relationships in Unified Modeling Language (UML) no-
tation [35] for the purely Cartesian case. The recursive
Berger-Collela SAMR algorithm tailored for the hyper-
bolic problems of interest is realized here in the central
class HypSAMRSolver; all others classes are generic, en-
abling the utilization of AMROC as a software frame-
work for the efficient implementation of different SAMR
algorithms typically implemented in new central SAMR-
Solver classes.

The intermediate AMROC design level naturally uti-
lizes classes of the base level that provide hierarchical
data structures. The base level is divided into elementary
functionality for single grid patches and the implemen-
tation of various lists that store these patches hierarchi-
cally. A common design for the base level (see also [29])
involves a Box class to specify a single rectangular box
in global integer index space. Methods for geometric op-
erations on boxes like concatenation or intersection are
available. A Patch class adds consecutive data storage
to a Box. In AMROC, the geometrical description of all
refinement areas is stored in hierarchical lists of Box ob-

6 Ralf Deiterding et al.

+calculate_in_patch()

Extra-/Interpolation

+apply_boundary_conditions()

EmbeddedBoundaryMethod

+set_patch()

LevelSetEvaluation

EBMHypSAMRSolver

HypSAMRSolver

0..*1

+set_cells_in_patch()

EmbeddedBoundaryConditions

1

1

GridFunction

1

+phi1

0..1
1

1

1

Figure 5 Class structure extension of Fig. 4 for level-set-
based embedded boundary methods.

jects inside a single GridHierarchy. The templatized class
GridFunction creates Patch objects for various, possibly
complex, data types following exactly the Box lists of
GridHierarchy. As the refinement lists in GridHierarchy
evolve and are dynamically distributed to an evolving set
of processors, the Patch objects in GridFunction are au-
tomatically re-created, including parallel redistribution
and synchronization.

The design of the hierarchical data structures in AM-
ROC follows the DAGH (Distributive Adaptive Grid Hi-
erarchies) package by Parashar and Browne [30] that it-
self was intended as software framework for SAMR al-
gorithms, but the enormous complexity in SAMR algo-
rithms and their auxiliary components makes framework
concepts at higher design levels (see above) more effec-
tive. As an illustration, Fig. 5 shows the most important
classes that have been added to the originally Carte-
sian SAMR framework to implement arbitrary level-set-
based embedded boundary methods like the one sketched
in Sec. 2.2. An abstract class LevelSetEvaluation is pro-
vided to evaluate the scalar GridFunction φ patch-wise;
EmbeddedBoundaryConditions allows the specification
of the detailed boundary value modification. Multiple
EmbeddedBoundaryMethods can also be considered and
are incorporated with minimal implementation overhead
into the existing algorithms of the SAMRSolver class for
hyperbolic problems, HypSAMRSolver, through the de-
rived class EBMHypSAMRSolver. The only operation
that had to be extended was that of applying physical
boundary conditions.

3 Lagrangian Formulation of Solid Dynamics

We adopt a conventional Lagrangian formulation [36]
for describing the large, dynamic deformations of solid
materials subject to high-intensity shock loadings. The
formulation accounts for finite kinematics, inertia and
general constitutive behavior, including strength.

3.1 Governing Equations

We select the configuration B0 ⊂ R3 of the body at
time t0 as the reference configuration. The coordinates
X of points in B0 are used to identify material parti-
cles throughout the motion. The motion of the body is
described by the deformation mapping

x = ϕ(X, t) (7)

(not to be confused with the levelset function). Thus, x
is the position of material particle X at time t. The ma-
terial velocity and acceleration fields follow from (7) as
ϕ̇(X, t) and ϕ̈(X, t), where a superposed (̇) denotes par-
tial differentiation with respect to time at fixed X. The
local deformation of an infinitesimal material neighbor-
hood is described by the deformation gradient

F = ∇0ϕ(X, t) , (8)

where ∇0 denotes the material gradient of a function
defined over B0. The scalar function

J = det
(
F(X, t)

)
(9)

is the Jacobian of the deformation and measures the ra-
tio of the deformed to undeformed volume of an infinites-
imal material neighborhood. The motion of the body is
subject to conservation of linear momentum (cf. [36]),
which takes the form

∇0 ·P + ρ0B = ρ0ϕ̈ , (10)

where B(X, t) is the body force per unit mass, P(X, t)
denotes the first Piola-Kirchhoff stress tensor and ρ0(X)
the mass density over B0. The symmetric Cauchy stress
tensor follows from P through the relation

σ = J−1PFT . (11)

For purposes of formulating boundary conditions, we
partition the boundary of B0 into a Dirichlet or dis-
placement boundary ∂B01 and a Neumann or traction
boundary ∂B02. The boundary conditions then take the
form

ϕ = ϕ̄ on ∂B01 , (12)
P ·N = T̄ on ∂B02 , (13)

where ϕ̄(X, t) is the prescribed deformation mapping on
∂B01, N is the unit outward normal to ∂B02 and T̄(X, t)
are the prescribed tractions applied to ∂B02. Finally,
dynamic problems require initial conditions ϕ0(X) and
ϕ̇0(X) to be specified over B0.

A Virtual Test Facility for the Simulation of Solid Material Response under Strong Shock Wave Loading 7

3.2 Shock-capturing Material Model

Assuming the material behavior is reversible, the stress
tensor can be computed from an internal energy function
U as

P =
∂U

(
FT F

)
∂F

. (14)

This model is well suited for low-intensity loading (see
Sec. 6.1), but when the solid interacts with high-intensity
fluid shocks, a strong stress wave propagates within the
solid (cf. Sec. 6.2). The inelastic material behavior then
has to be accounted for and a shock-capturing numeri-
cal scheme is also needed to accurately represent evolv-
ing stress fronts inside the solid. Here, we apply a La-
grangian artificial viscosity method for solids with
strength presented in [37]. The addition of artificial vis-
cosity has the intended effect of spreading fronts that
are too steep to be resolved accurately over several grid
points without altering their speed of propagation while
avoiding the introduction of numerical artifacts such as
spurious oscillations (cf. [38]).

A general constitutive theory of inelastic material be-
havior may be based on irreversible continuum thermo-
dynamics (cf. [39,40,41] for more extensive accounts). In
this context, viscosity may be modeled by assuming an
additive decomposition

P = Pe + Pv (15)

of the first Piola-Kirchhoff stress tensor into an equilib-
rium part Pe and a viscous part Pv. Additionally, we
assume that the local thermodynamic state of the ma-
terial is fully described by the local deformation F, the
local absolute temperature T , and a collection q of inter-
nal state variables. In particular, we assume that the free
energy per unit of undeformed volume can be expressed
as a function A(F, T,q). As in the reversible case ex-
pressed in Eq. (14), the equilibrium stresses then follow
from the free energy as

Pe = A,F (F, T,q). (16)

In materials without strength, A depends on the defor-
mation only through the Jacobian J and the hydrostatic
pressure p is computed by

p = −A,J . (17)

Here, we adopt the usual fluids convention and regard
compressive pressure as positive. In the presence of
shocks propagating in the solid, the volumetric response
is described by a suitable equation of state (EOS). The
constitutive library in the VTF is endowed with well-
established phenomenological equations of state for so-
lids including the Mie-Gruneisen EOS, as well as others
obtained from first-principles quantum mechanics calcu-
lations as part of the Center’s efforts in multiscale mod-
eling.

In addition to a volumetric equation of state, a com-
plete characterization of the behavior of the solid re-
quires a description of its strength, including its elas-
ticity, yield point, strain hardening, rate sensitivity and
temperature dependence. This is accomplished by the
specification of the internal energy density A, plus suit-
able kinetic equations for the internal state variables q.
Owing to the high strain rate under consideration, only
adiabatic material models are considered. In addition,
the material is assumed to obey the J2-flow theory of
plasticity. We adopt a standard formulation of finite-
deformation plasticity based on a multiplicative decom-
position of the deformation gradient into elastic and
plastic components: F = FeFp, where Fp is assumed
to be volume-preserving. The equilibrium stress-strain
relation (17) is now extended to include the elasticity of
the material in shear, with the result [41,42]

σe = −pI + J−1Fe
{
µ(log

√
Ce)dev

}
FeT , (18)

where Ce = FeT Fe is the elastic Cauchy-Green defor-
mation tensor, log

√
Ce is the logarithmic elastic strain

and µ is a shear modulus. The plastic deformation Fp is
assumed to obey the Prandtl-Reuss flow rule

ḞpFp−1 = ε̇p
3se

2σ̄
, (19)

where se = σe,dev is the stress deviator, σ̄ =
√

(3/2)se
ijs

e
ij

denotes the von Mises stress, and εp is the effective plas-
tic strain. Relation (19) is solved by considering a hard-
ening law

σ̄ = σ̄ (εp, ε̇p, J) (20)

that characterizes the material behavior. The VTF pos-
sesses a large set of constitutive models and algorithmic
updates that describe a wide range of material response,
including variational updates for isotropic and crystal
plasticity [41], a multiscale model of single-crystal b.c.c.
tantalum [43] and a polyconvex model for anisotropic
cubic crystals [44].

The viscous part of the stresses (15) is assumed to
take the form

Pv(Ḟ,F) = JσvF−T , (21)

where σv = 2ηh(symḞF−1)dev and ηh denotes the vis-
cosity coefficient. In the latter, sym and dev denote the
symmetric and deviatoric components of a tensor, re-
spectively. In order to construct an artificial-viscosity-
based scheme, we assume that the viscosity coefficient is
comprised of two terms, leading to

ηh = η +∆η, (22)

where η is the physical viscosity coefficient of the ma-
terial and ∆η the added artificial viscosity. We refer to
[37,38,45] for details about the evaluation of ∆η.

8 Ralf Deiterding et al.

3.3 Finite-Element Temporal Integration

The preceding continuum formulation is rendered into a
form suitable for computation by combining a time dis-
cretization of the momentum and constitutive equations
with a finite element discretization for the reference con-
figuration of the solid. More detailed accounts may be
found in [40,41]. We consider finite element interpola-
tions of the form

ϕ(X) =
N∑

a=1

xaNa(X), (23)

where xa is the current position at node a and Na are
the shape functions. The sum on a ranges over the N
nodes of the mesh. The displacement shape functions Na

must be conforming. In calculations, we employ standard
quadratic, six-noded triangles or ten-noded tetrahedra
(e.g., [46]). Utilizing these definitions, the weak formu-
lation of the linear-momentum balance equation (10) is
written as

f inert
a = f ext

a − f int
a with (24)

f inert
a =

∫
B0

ρ0NaNb dΩẍb 'Mabẍb, (25)

f int
a =

∫
B0

P : ∇0Na dΩ and (26)

f ext
a =

∫
∂B02

T̄Na dS +
∫

B0

ρ0Bn+1Na dΩ. (27)

In these equations, M is the diagonal lumped mass ma-
trix and f inert, f int and f ext are the inertial, internal and
external forces, respectively.

Here and subsequently, we implement an incremen-
tal solution procedure aimed at sampling the solution
at discrete times t0, t1, . . . , tn, where tn+1 = tn + 4t.
The integration in time is performed with the Newmark
family of time-stepping algorithms:

xn+1
a = xn

a +4t ẋn
a +

4t2[(1/2− β)ẍn
a + βẍn+1

a], (28)
ẋn+1

a = ẋn
a +4t [(1− γ)ẍn

a + γẍn+1
a], (29)

ẍn+1
a = M−1

ab [f ext − f int]n+1
b , (30)

where β and γ are Newmark parameters. The perfor-
mance of the Newmark algorithm, including its range of
stability, has been extensively documented in the litera-
ture (e.g. [47,48,49]). Our particular case of β = 0, γ = 1

2
is explicit and second-order accurate and leads to a cen-
tral difference scheme.

3.4 Parallel Implementation

Our finite element solid solver “Adlib” is implemented in
C following a modular concept that encapsulates similar
functionality in libraries. The main libraries are:

Figure 6 Initial tetrahedral mesh for a beam (≈ 10,000
elements).

Figure 7 Domain decomposition (indicated by color) to 16
processors with subdivision of one level for the mesh shown
in Fig. 6.

– The material library, which provides the material re-
sponse to a given deformation history for a set of
complex constitutive material models;

– the mesh manager, which is responsible for the con-
struction of the elements, connectivity tables and for
the attribution of the properties to the elements;

– the mechanics library, which manages the space and
time integration of the finite element discretization;

– the partitioning library, which is responsible for dis-
tributing the mesh to the processors of a parallelized
application.

In Adlib, different types of applications are realized by
providing a specific main program that calls the required
library functionality. Problem-specific front-end routines,
e.g. for boundary conditions, are linked to enable de-
tailed customization. Although more classical than the
concepts discussed in Sec. 2.5, we achieve effective code
re-use in the same application domain. For instance, the
extensive VTF material library is shared among Adlib
and the VTF thin-shell finite element solver with frac-
ture capability (see [50] for a computational example).

In the following, we detail the Adlib parallelization
library. The parallelization strategy employed in Adlib
is straightforward domain decomposition. The mesh dis-
tribution is based on heuristic graph partitioning as pro-
vided by the well-established software package METIS
[51]. Optionally, the local mesh can be recursively re-

A Virtual Test Facility for the Simulation of Solid Material Response under Strong Shock Wave Loading 9

Figure 8 Scalability test for the solid solver.

fined using a mesh subdivision algorithm for tetrahedral
meshes proposed by Liu and Joe [52]. In every refine-
ment iteration, each tetrahedron is subdivided into eight
new ones. For illustration purposes, this algorithm is ap-
plied to the mesh for a beam with about 10,000 elements
shown in Fig. 6 that is distributed to 16 processors. On
each processor, the mesh is subdivided with one level
of refinement leading to the configuration displayed in
Fig. 7. The main advantage of this algorithm is that only
two new classes of slightly less regular tetrahedra are in-
troduced, independent of the number of refinement iter-
ations, thus enabling the creation of distributed meshes
in a scalable way. The uniqueness of the algorithm en-
sures conforming elements in every level of subdivision.
Note that the application of the subdivision procedure
mandates the reconstruction of the interprocessor com-
munication maps.

For parallel fluid-structure interaction simulations,
all the above libraries are linked to the coupled code.
A solid update step begins as usual by applying bound-
ary conditions (here tractions produced by the hydro-
dynamic pressure), and proceeds by computing the pre-
dictor configuration of the solid and performing the nec-
essary constitutive updates at each element quadrature
point as part of the assembly of the global residual vec-
tor. At this point, a point-to-point communication oper-
ation is necessary to exchange the incomplete residuals
at partition boundary nodes. After this step, the cor-
rected nodal accelerations and velocities can be obtained
locally by applying the unmodified corrector step. As the
communication operations involve only partition bound-
ary data, and retain a surface to volume character, the
solid update algorithm shows excellent scalability prop-
erties.

In order to illustrate this fact, a study of strong scal-
ing has been performed for a tensile test utilizing the
mesh depicted in Fig. 6 (one level of subdivision). The
test was run on a cluster of AMD Opteron-2.2 GHz quad-
core nodes connected with an Infiniband network. The

average compute time per element per step is shown in
Fig. 8 and we measure a constant parallel efficiency of
approximately 0.9. The efficiency of the method has also
been confirmed in several large-scale computations re-
lated to the dynamic response of polycrystalline materi-
als [53,54,55,56,57,58] that have only been made possi-
ble by employing the massively parallel systems provided
by the DoE ASC program.

4 Closest-Point-Transform Algorithm

In Sec. 2, we have introduced the concept of a signed
distance function as a natural way to represent a com-
plex embedded boundary on a Cartesian mesh. While
signed distance functions are easily prescribed for single
elementary geometric objects, their evaluation can be
extremely cumbersome for complex shapes. In coupled
Eulerian-Lagrangian simulations, this complex shape is
defined by the boundary of the solid mesh. Since the
solid mesh is tetrahedral (cf. Sec. 3), the interface is a
triangle mesh. In the following, we outline the specific al-
gorithm that we have developed to effectively transform
the explicit description of a triangulated surface mesh
into a signed distance function. The problem is equiva-
lent to finding for every discrete point on the Cartesian
SAMR grid the nearest or closest point on this surface
mesh. The algorithm is therefore named the closest point
transform (CPT). Without loss of generality, we assume
a single uniform Cartesian grid in the following discus-
sion.

4.1 Problem Description

Let φ(x), x ∈ Rn, be the distance from the point x
to a manifold I. If dim(I) = n − 1 and the manifold
is closed, (for example, curves in 2-D or surfaces in 3-
D), then the distance may be signed. The orientation
of the manifold determines the sign of the distance. We
adopt the convention that the outward normal points
in the positive direction. In order for the distance to be
well defined, the manifold must be orientable and have a
consistent orientation. A Klein bottle in 3-D, for exam-
ple, is not orientable. Two concentric circles in 2-D have
consistent orientations only if the normals of the inner
circle point “inward” and the normals of the outer circle
point “outward”, or vice versa. Otherwise, the distance
would be ill-defined in the region between the circles.
For manifolds which are not closed, the signed distance
is ill-defined in any neighborhood of the boundary. How-
ever, the distance is well-defined in neighborhoods of the
manifold which do not contain the boundary.

The signed distance φ to a surface I satisfies the
eikonal equation

|∇φ| = 1 (31)

with boundary conditions φ
∣∣
I = 0 (see [59]). For most

boundary conditions, a solution to (31) exists only in the

10 Ralf Deiterding et al.

weak sense. It is continuous, but only piecewise differ-
entiable. The solution is non-differentiable where char-
acteristics intersect. These are places that have multiple
closest points to the manifold. At differentiable points on
the manifold, the direction of the characteristics of (31)
is given by the local normal on I, i.e. ∇φ/|∇φ|, and the
characteristics are straight lines.

In computing the distance and closest point to a tri-
angle mesh surface, one can consider each component of
the mesh (face, edge or vertex) separately. For each en-
tity, there are simple geometric formulas for computing
the distance and closest point. For signed distance, one
needs to use the surface normals to determine the sign
of the distance. The surface normal along an edge is in
the direction of the average of the incident face normals.
The surface normal at a vertex is a weighted average of
the incident face normals. The weighting is proportional
to the angle in the face at that vertex.

For the fluid-solid coupling, we only need to deter-
mine the distance and closest point information in a nar-
row band around the interface as the information is only
utilized in the ghost cells. Let δ be the Cartesian dis-
tance such that all ghost cells are within that distance
of the interface surface. If the distance is computed up
to δ, then one can flood fill the distance to determine
which of the remaining grid points are inside or outside
the solid.1

4.2 Iteration and Tree Data Structures

In the simplest algorithm for computing distance φ and
closest point information C up to a distance δ, one loops
over all components of the surface mesh I (faces, edges
and vertices) and all Cartesian grid points. This straight-
forward algorithm reads:

simplest(φ, C, I, δ)
for all i,j,k:

φ[i,j,k] = ∞
for all face in I:

for all i,j,k:
d = distance from grid point (i,j,k) to face
if |d| ≤ δ and |d| < |φ[i,j,k]|:

φ[i,j,k] = d
C[i,j,k] = closest point on face

for all edge in I:
. . .

for all vertex in I:
. . .

return

The algorithm has computational complexity O(MG),
where M is the number of components in the mesh and
G is the number of grid points. Since time-explicit finite
volume methods basically have complexity O(G) for a

1 Flood filling means looping over the grid points while
only keeping track of the sign of the distance.

(a) (b)

(c) (d)

Figure 9 The characteristic polyhedra for faces, edges, and
vertices.

single time step, this naive algorithm is not suitable for
computing the CPT during the course of a simulation.

An alternative could be to store the mesh in a data
structure that supports minimum distance queries, like
a bounding box tree [60]. However, the average expected
complexity of a single distance or closest point computa-
tion in this approach would still be O(logM). This im-
plies an overall complexity of O(G logM) for the CPT
algorithm. By taking advantage of the fact that the grid
points of the Cartesian mesh form a lattice, we have been
able to develop a CPT algorithm tailored especially for
our purposes with better computational complexity.

4.3 The CSC Algorithm

One can efficiently compute the distance and closest
point on a grid by solving the eikonal equation with the
method of characteristics and utilizing polyhedron scan
conversion. This is called the characteristics/scan con-
version (CSC) algorithm [61]. For a given grid point, the
closest point on the triangle mesh lies on one of the prim-
itives (faces, edges and vertices) that comprise the sur-
face. The characteristics emanating from each of these
primitives form polyhedral shapes, which we call charac-
teristic polyhedra. A characteristic polyhedron contains
all of the points which are possibly closest to its cor-
responding face, edge or vertex. We determine the grid
points that lie within each of these polyhedra, then use
simple geometric formulas to calculate distance and clos-
est points for the primitive.

The closest points to a triangle face must lie within a
triangular prism defined by the face and its normal. The
prism contains the characteristic lines emanating from
the face (see Fig. 9a for the face polyhedra of an icosa-
hedron). Each edge in the mesh is shared by two faces.

A Virtual Test Facility for the Simulation of Solid Material Response under Strong Shock Wave Loading 11

Figure 10 Scan conversion of a polygon in 2-D and slicing
of a polyhedron to form polygons.

The closest points to an edge must lie in a cylindrical
wedge defined by the line segment and the normals to
the two incident faces, which is depicted in Fig. 9b. A
single edge polyhedron is shown in Fig. 9c. Each vertex
in the mesh is shared by three or more faces. The clos-
est points to a vertex must lie in a polygonal pyramid
defined by the normals to the incident faces. The vertex
polyhedra of an icosahedron are displayed in Fig. 9d.

We can determine the grid points that lie inside a
characteristic polyhedron with polyhedron scan conver-
sion. The polyhedron is first sliced along each sheet of the
grid lattice to produce polygons. Polygon scan conver-
sion (or rasterization) is a standard technique in com-
puter graphics for displaying filled polygons on raster
displays [62,63]. It is a method for determining the pix-
els on the display which lie inside a polygon. Figure 10
depicts polygon scan conversion and slicing of a poly-
hedron. Utilizing the method of characteristics and scan
conversion together, we formulate the algorithm for com-
puting the CPT now as follows:

cpt(φ, C, I, δ)
for all i,j,k:

φ[i,j,k] = ∞
for all face in I:

p = polyhedron containing closest points to face
grid indices = scan convert(p)
// Loop over the scan converted points.
for i,j,k in grid indices:

d = distance from grid point (i,j,k) to face
if |d| ≤ δ and |d| < |φ[i,j,k]|:

φ[i,j,k] = d
C[i,j,k] = closest point on face

for all edge in I:
. . .

for all vertex in I:
. . .

return

4.4 Computational Complexity

Consider computing the closest point transform up to
a distance of δ. If δ is small and the surface is smooth,
the computational complexity of the algorithm is linear
in both the size of the mesh and the number of grid

points within δ of the surface. Thus, it has the optimal
complexity.

Let the Cartesian grid have N points within a dis-
tance δ of the surface, and let ν be the ratio of the sum
of the volumes of all the scan converted polyhedra di-
vided by the volume of the domain within a distance δ
of the surface. The ratio ν depends on the shape of the
surface and the distance δ. If the surface is jagged and
δ is relatively large, then ν will be large. If the surface
is smooth and δ is relatively small, then ν will be close
to unity. The total computational complexity of the al-
gorithm is O(νN + M). The O(νN) term again comes
from scan conversion and the closest point and distance
computations for the grid points. The O(M) term rep-
resents the construction of the characteristic polyhedra.
Since we expect both M and N to be small compared to
the total number of grid points G, the CSC algorithm is
suitable for computing the CPT during the course of a
simulation.

The CSC algorithm stores the grids for distance and
closest point and the mesh for which the CPT is com-
puted. Beyond these data structures, which define the
problem, it does not require significant additional stor-
age. The components of the mesh (i.e., the faces, edges
and vertices) are dealt with one at a time. The memory
required to scan convert a single polyhedron is insignif-
icant compared to the memory needs of the grid and
the mesh. Thus, the CSC algorithm essentially has the
minimum storage requirements for the CPT problem.

4.5 Concurrency and SAMR

If the solid mesh (and hence the solid boundary) is dis-
tributed over multiple processes, the pieces must be as-
sembled into a cohesive triangle mesh before computing
the CPT. This is because one needs to know the in-
cident faces of edges and vertices in order to compute
the correct sign of the distance. We accomplish this by
maintaining global identifiers for the nodes in the solid
mesh.

In the course of a simulation with the SAMR frame-
work sketched in Sec. 2.4, each fluid process performs the
sequential CSC algorithm. As we use a rigorous domain
decomposition to partition the SAMR hierarchy, only
those components of the triangulated surface meshes
that are within a distance δ of the local domain need
to be considered for this computation. The necessary
clipping operation is best performed before sending the
distributed parts of the solid surface mesh to the receiv-
ing fluid processes. The details of our implementation
are outlined in Sec. 5.2.

In order to make efficient use of the CPT algorithm
within the SAMR method, we have organized our CPT
implementation such that the algorithm can be called
once for a multitude of subgrids that effectively lie within
the same lattice. This arrangement ensures that each

12 Ralf Deiterding et al.

characteristic polyhedron is constructed and scan con-
verted only once for each level in the SAMR hierarchy
and guarantees computational performance that is basi-
cally independent of the number of subgrids.

5 Fluid-Structure Coupling

The explicit fluid and solid solvers are weakly coupled by
applying appropriate boundary conditions at the fluid-
solid interface I via a time-splitting technique described
below. In the case of inviscid flows considered here, these
boundary conditions correspond—in the Lagrangian no-
tation of Sec. 3, [14]—to the continuity of the normal
component of the velocity field:

Ju · nK = 0 on I (32)

and the continuity of the normal component of the trac-
tion across the fluid-solid interface, i.e.

Jt · nK = JσijninjK = JσnK = 0 on I. (33)

In the expressions above, J.K represents field jumps and
u is the velocity which in the solid can be expressed in
terms of the deformation mapping ϕ (X, t) as

uS (x, t) =
(
ϕ̇ ◦ϕ−1

)
(x, t) , (34)

where t and n are the spatial surface traction and nor-
mal vectors, respectively and σij are the components of
the Cauchy stress tensor as defined in Eq. (11). The re-
sulting boundary conditions at the fluid solid interface
are simply

uS
n = uF

n

σS
nn = pF

∣∣∣∣
I

(35)

For simplicity, and owing to the extremely short time
scales involved in the problems of interest, it is assumed
that heat transfer across the fluid-solid interface is neg-
ligible and, thus, can be ignored.

The following simple temporal splitting scheme is
adopted to accomplish the loose coupling between fluid
and solid solver [2]2:

uF
n := uS

n(t)|I
update fluid(∆t)

σS
nn := pF (t+∆t)|I

update solid(∆t)

t := t+∆t

We have implemented this algorithm with an ad-hoc par-
titioning into dedicated fluid and solid processes that
communicate to exchange the data along I. In the fol-
lowing subsections we will outline some of the specifics
of our approach that make the VTF a highly efficient
framework for fluid-structure simulation on distributed
memory machines.

2 More general implicit and staggering schemes for coupled
systems have been proposed and studied in detail in [64,65].

5.1 Coupled Simulations with Eulerian SAMR

Unsteady compressible fluid flows typically show a wide
range of temporal and spatial scales. While the correct
numerical representation of supersonic shock and deto-
nation waves usually requires very fine resolution only
in a small band around the phenomenon of interest, a
considerably coarser resolution is often sufficient in the
majority of the fluid domain. This is in particular true in
our case of strong pressure waves arising from the det-
onation of highly energetic materials; one is interested
mainly in the stress waves produced by shock impact in
the solid target materials and the resulting material re-
sponse. Hence, incoming fluid waves and the near-body
fluid-structure interaction have to be captured with high
accuracy, but resolution can be reduced for outgoing
fluid phenomena and in the far field. We achieve the
required solution adaptation in the fluid by applying
the dynamic mesh adaptation algorithm described in
Sec. 2.3. The fluid-solid interface I is treated herein as a
discontinuity with a-priori refinement at least up to the
coupling level lc. As the wave phenomena in solid ma-
terials are usually at least as fast as the waves in com-
pressible fluids, the coupling level lc will usually be the
highest computationally permissible choice in order to
ensure an accurate wave transmission. But special care
is required to initiate the data exchange according to the
above basic coupling method in a way that is compatible
with the recursive SAMR algorithm.

The coupled SAMR method is implemented below
in the routine advance level() that calls itself recursively
with the current level as argument l:

advance level(l)
repeat rl times

if time to regrid
regrid(l)

cpt(φl, Cl, I, δl)
update fluid level(Ql, φl, Cl, uS |I , ∆tl)
if level l + 1 exists

advance level(l + 1)
Correct Ql(t+∆tl) with Ql+1(t+∆tl)

if l = lc
send interface data(pF (t+∆tl)|I)
if t+∆tl < t0 +∆t0

receive interface data(I, uS |I)
t := t+∆tl

return

The algorithm calls the routine cpt() from Sec. 4.3 to
evaluate the signed distance φ and the closest point in-
formation C for the actual level l based on the currently
available interface I. Together with the recent solid ve-
locity on the interface uS |I , the discrete vector of state in
the fluid Q is updated for the entire level with the numer-
ical scheme outlined in Sec. 2.2. The SAMR method then
proceeds as usual recursively to higher levels and utilizes
the (more accurate) data from the next higher level to

A Virtual Test Facility for the Simulation of Solid Material Response under Strong Shock Wave Loading 13

correct the values in cells of the current level overlaid
by refinement. If level l is the coupling level lc, we use
the updated fluid data to evaluate the pressure values
to be sent to the solid and to receive an updated inter-
face mesh and velocities uS |I . The recursive order of the
SAMR algorithm automatically ensures that updated in-
terface mesh information is available for later time steps
on coarser levels and to adjust the grids on level lc dy-
namically before the current mesh (i.e., the level set in-
formation derived from it) is actually used to again ad-
vance level lc. In order to achieve a proper matching of
communication operations, we start the cycle by posting
a receive-message in the routine fluid step(), which does
one fluid time step on level 0, before entering into the
SAMR recursion. The routine fluid step() below high-
lights a straightforward automatic time step adjustment
for the SAMR method coupled to a solid solver.

fluid step()
∆τ

F
:= min

l=0,··· ,lmax
(Rl· stable fluid timestep(l), ∆τ

S
)

∆tl := ∆τ
F
/Rl for l = 0, · · · , L

receive interface data(I, uS |I)
advance level(0)

return

During one root level time step at level 0 the time steps
on all levels remain fixed and are calculated in advance
by employing the refinement factor with respect to the
root level Rl =

∏l
ι=0 rl (cf. Sec. 2.3). The root level time

step ∆τ
F

itself is taken to be the minimum of the stable
time step estimations from all levels and a corresponding
time step ∆τ

S
in the solid. We define ∆τ

S
as a multiple

of the stable time step estimation in the solid solver with
respect to the communication frequency Rlc in one fluid
root level step and an additional factor K that allows
sub-iterations in the solid solver in case of considerably
smaller solid time steps. The solid update algorithm used
to advance the solid by one fluid root level step ∆τ

F
is

given below.

solid step()
∆τ

S
:= min(K ·Rlc · stable solid timestep(), ∆τ

F
)

repeat Rlc times
tend := t+∆τ

S
/Rlc , ∆t := ∆τ

S
/(KRlc)

while t < tend

send interface data(I(t), uS |I (t))
receive interface data(pF |I)
update solid(pF |I , ∆t)
t := t+∆t
∆t := min(stable solid timestep(), tend − t)

return

The data exchange between solid step() and fluid step(),
within advance level(), is visualized in Fig. 11 for an ex-
emplary SAMR hierarchy with two additional levels with
r1 = r2 = 2 and K = 4 sub-iterations in solid step().
As in the simulations in the Secs. 6.1 and 6.2, the cou-
pling level lc = 1 is not the maximal level of refine-
ment. Figure 11 visualizes the recursion in the SAMR

F1

Time

S1 S5S3 S7S2 S6S4 S8

F2

l=0

l=2

l=l =1
c

F5

F3 F6F4 F7

Figure 11 Data exchange between the recursive fluid
SAMR solver and the linear solid solver throughout one root
level time step. Red and blue arrows: flow of interface data
from fluid to solid and vice-versa. Gray arrows: regridding of
higher SAMR levels, the base level (gray circles) stays fixed.

method by numbering the fluid update steps (F) accord-
ing to the order determined by advance level(). The or-
der of the solid update steps (S) on the other hand is
strictly linear. The flow of coupling information between
solid step() and advance level() is visualized by the red
and blue arrows. The red arrows correspond to the send-
ing of the interface pressure values pF |I from fluid to
solid at the end of advance level(lc). The blue arrows
represent the sending of the interface mesh I and its
nodal velocities uS |I after at least K solid steps. Note
that the receive interface data() call for the latter oper-
ation is placed into fluid step() and advance level() such
that the updated mesh information can be employed to
adjust the adaptive refinement in regrid() before it is
actually used in an update fluid level() operation. The
modification of refinement meshes is indicated in Fig. 11
by the gray arrows; the initiating base level that remains
fixed throughout the regridding operation is indicated by
gray circles.

The incorporation of the algorithms described above
into the AMROC framework is relatively straightfor-
ward. Utilizing the design for general embedded bound-
ary methods sketched in Sec. 2.5, we have implemented
fluid step() and the fluid-structure coupled version of
advance level() in a class CoupledHypSAMRSolver de-
rived from EBMHypSAMRSolver (cf. Fig. 12). Coupled-
HypSAMRSolver interpolates the pressure values pF |I
along the surface mesh and communicates them to the
CoupledSolidSolver through the coupling module Inter-
SolverCommunication (see next section for details). Cou-
pledHypSAMRSolver receives an updated interface mesh
I that it passes to the ClosestPointTransform which is
naturally made available as a concrete class based on
LevelSetEvaluation. Further, CoupledHypSAMRSolver
receives updated interface velocities uS |I to be used
in EmbeddedMovingWalls as the necessary concretiza-
tion of EmbeddedBoundaryConditions. In order to re-
use our standard TimeStepControler we have incorpo-
rated CoupledHypSAMRSolver and CoupledSolidSolver

14 Ralf Deiterding et al.

+fluid_step()

-advance_level()

-stable_fluid_timestep()

CoupledHypSAMRSolver

EBMHypSAMRSolver

+next_step()

CoupledSolver11

TimeStepControler

1

1

+solid_step()

-stable_solid_timestep()

CoupledSolidSolver

1 1

+send_interface_data()

+receive_interface_data()

InterSolverCommunication

1

1

1

1

EmbeddedMovingWalls+cpt()

-scan_convert()

ClosestPointTransform

+set_cells_in_patch()

EmbeddedBoundaryConditionsLevelSetEvaluation

1

1

1

1

+update_solid()

SolidSolver

Figure 12 Class structure of the fluid-structure coupling
method realized as a concrete embedded boundary method
in AMROC, see Fig. 5 for base classes.

as attributes into a single CoupledSolver that encapsu-
lates the extended method.

5.2 Efficient Inter-solver Communication

Critical to the performance of the coupled algorithms
are the inter-solver communication routines send inter-
face data() and receive interface data(). In order to en-
sure good communication performance, we have imple-
mented InterSolverCommunication as a dedicated asyn-
chronous communication module that sets up detailed
point-to-point communication patterns between the fluid
and solid processes and avoids assembling global data
structures.

The domain decomposition of the solid mesh across
the solid processes also partitions the triangle surface
mesh (cf. Sec. 3.4). A simple approach to coupling is to
assemble the global boundary of the solid (i.e. gather
the pieces from each process and merge them into a sin-
gle mesh) and broadcast it to all fluid processes. Each
fluid process then uses the relevant portion of the global
boundary for the CPT and supplies pressure information
for a portion of the boundary. Next, the pressure infor-
mation is merged and broadcast to each solid process.
Unfortunately, this simple strategy is not efficient for
large sold meshes owing to the costs of assembling, stor-
ing, and communicating the global boundary and global
pressure data structures.

A better approach is to use point-to-point communi-
cations between the solid and fluid processes. Each solid
process sends its portion of the boundary only to those

fluid processes which require it on order to compute the
CPT. Consider a single fluid process whose grids lie in
a domain Ω and suppose that the closest point trans-
form will be computed to a distance of δ. Then the fluid
process needs only those portions of the interface that
are within a distance δ of Ω. If the fluid process receives
only the relevant portions of the interface, it can assem-
ble them into a local triangle mesh that is sufficient for
computing the CPT and setting the boundary conditions
in the ghost cells.

We determine the point-to-point communication pat-
tern with bounding box information. Each solid process
constructs a Cartesian bounding box around its portion
of the interface. Likewise, each fluid process constructs
a Cartesian bounding box around its domain and en-
larges it by δ. The solid bounding boxes define which
portion of the interface the solid process has; the fluid
bounding boxes define which portion of the interface
the fluid process needs. These bounding boxes are gath-
ered to root fluid and solid processes. The root processes
then exchange their sets of bounding boxes and broad-
cast the set to either the fluid or solid processes. Now
each fluid process has all of the solid bounding boxes
and vice versa. Each process intersects its own bounding
box with the received set of bounding boxes to set up
communication data structures that consider only those
portions of the surface mesh, and the data defined on
it, that are relevant to the local process. The communi-
cation between solid and fluid is non-blocking to enable
overlapping communication and computation.

This strategy is much more efficient than assembling
the global boundary. It is far less costly to gather and
broadcast bounding boxes than to gather, assemble, and
broadcast the boundary itself. Intersecting the bounding
boxes to determine the communication pattern is also
inexpensive. Note that this pattern is computed anew
for each inter-solver communication and will in general
change as the simulation progresses.

It is worth mentioning that the efficiency of the above
point-to-point communication scheme necessarily relies
on the fact that the fluid and solid meshes by themselves
are reasonably partitioned. One could easily construct
pathological cases where each is partitioned into long,
thin pieces and each fluid process needs to communi-
cate with each solid process. However, with the locality-
preserving partitioning strategies employed in AMROC
(generalized space-filling curve) and the parallel solid
solver (graph-partitioning provided by Metis), this never
occurs in practice.

6 Examples of Application

In this section, we present two examples of application
of the computational framework described above. The
first example corresponds to the simulation of the ef-
fects of a blast wave on the human body. The second

A Virtual Test Facility for the Simulation of Solid Material Response under Strong Shock Wave Loading 15

Figure 13 Mesh of the liver inside the torso (left). Domain
decomposition of the solid mesh and fluid mesh adaptation
at the boundary (right).

example is a simulation of a detonation wave confined
in a detonation tube and impacting a tantalum target.
These applications illustrate the robustness and versa-
tility of the coupled computational approach as well as
the computational performance on parallel machines of
moderate size.

6.1 Shock Wave Impact on Soft-tissue Body

As a first example, we consider a three-dimensional fluid-
structure interaction problem with ψ ≡ 0, q ≡ 0, which
requires only the equations (1) to (3) and (5) to simulate
the purely hydrodynamic fluid flow. The problem is the
dynamic interaction of a spherical blast pressure wave
with a very simplified human body. Human injuries cau-
sed by the nearby explosion of a small amount of highly
energetic material are divided into primary and secon-
dary types: primary injuries are due to the blast wave,
while secondary injuries are due to shrapnel. Primary
injuries occur within a close distance of 1 to 2m and
lead to strong impulses of 1 to 2 ms duration. Under
such conditions, conventional ballistic protective armor
has proven to be effective for mitigating the causes lead-
ing to secondary injuries. Unfortunately, armored vests
do not protect against the shock wave and can even en-
hance harmful blast effects. In the following, we study
the stress concentrations in the human liver resulting
from a blast event. An idealized geometric model of the
liver is embedded in a homogeneous model torso of soft
material (see Fig. 13). The liver is assumed softer and
denser than the torso. Table 1 enumerates the elastic
material properties adopted in the calculation.

Table 1 Material properties of soft tissues.

Liver Torso

Young modulus 5 MPa 100 MPa
Poisson coefficient 0.3 0.3
Density 1500 kg/m3 950 kg/m3

We assume an explosion of 0.5 kg TNT in air at a dis-
tance of 1.5 m from the body. The ambient fluid pressure
is pa = 100KPa and the temperature is Ta = 293K. The
ideal gas relation p = ρRT then yields an ambient den-
sity of ρa = 1.212 kg/m3, and the ratio of specific heats
is set to the constant value γ = 1.4. The energy release
from the TNT explosion is Ei = 2260 kJ/kg, which, for
simplicity, is assumed to be uniformly distributed over a
small sphere of radius 5 cm with its gas initially at rest.
The initial temperature in this sphere is assumed to be
Ti = 1465 K. Using (5) and the ideal gas relation to-
gether we evaluate pressure and density within the small
sphere to be pi ≈ 1700 KPa and ρi ≈ 4122 kg/m3. These
initial conditions result in the formation of a blast wave
in the fluid (cf. Fig. 14).

The solid mesh used for this simulation has 19, 562
nodes, while the SAMR mesh in the fluid has 100×100×
100 cells at the root level and employs two additional lev-
els, both refined by a factor of 2 (cf. Fig. 13). The fluid
domain is 5 m× 5 m× 5 m. Scaled gradients of pressure
and density are used as refinement criteria to resolve the
incoming pressure wave accurately. The coupling level
is set to lc = 1, and we use K = 20 sub-iterations in
the solid solver. The distance δ within which the exact
signed distance information around the interface mesh is
evaluated by the CPT algorithm is set to three times the
diagonal of a finite volume cell.3 This setting is sufficient
to allow the construction of two internal ghost cells ac-
cording to Sec. 2.2. With target CFL conditions of 0.3 in
the fluid and 1.0 in the solid, we calculate 420 fluid root
level steps to reach a final time of 6 ms, which involves
16, 800 update steps in the solid solver. The simulation is
completed in about 10 h real time on 10 dual-processor
2 GHz G5 nodes of a Linux Beowulf cluster connected
with Myrinet. In this computation, 14 and 6 processes
were used for the fluid and solid solvers, respectively. The
size of the fluid SAMR mesh increases during the sim-
ulation from approximately 1, 045, 000 cells initially to
about 2, 026, 000 cells, when the pressure wave impacts
the torso.

A non-dimensional analysis due to Taylor for a local-
ized explosion gives the following relations for the peak
overpressure ∆ps and its arrival time t at a distance d
from the center of the explosion [66]:

∆ps = K1
Ei

d3
, t = K2

√
d5ρa

Ei
(36)

In these relations, K1 and K2 are non-dimensional con-
stants and ρa is the ambient density. For air, Taylor has
measured K1 = 0.155 and K2 = 0.926. More accurate
values have been given by Brode who conducted exten-
sive numerical investigations and summarized the results

3 This choice makes δ dependent on the mesh width on
each SAMR level.

16 Ralf Deiterding et al.

Figure 14 Formation and propagation of the blast wave
(time=0.31ms).

Figure 15 Stress waves in the torso after the impact.

in the relations [67]

∆ps[bar] =
6.7
z3

+ 1 bar ,

if ∆ps > 10pa ,

∆ps[bar] =
0.975
z

+
1.455
z2

+
5.85
z3

− 0.019 bar ,

if 0.1pa < ∆ps < 10pa , (37)

where all pressures are in bar and z = d/W
1
3 in m kg−1/3

is the distance scaled with the charge mass W expressed
in kg of equivalent TNT. In our simulation, we set W
to the value 0.5. Figures 14 to 17 show the simulation
results. The shock wave reaches the torso at t = 1.55 ms
(see Fig. 16). This value is in reasonable agreement with
the prediction from (36) considering the fact that (36)
is derived for an ideal spherical shock wave emanating
from a point source. At a distance d = 1.5 m, the over-
pressure peak according to (36) is ∆ps ≈ 104 KPa. Our
computation gives a value ∆ps ≈ 175 KPa, which is close
to Brode’s approximation (37) with ∆ps ≈ 177 KPa
at z = 1.89. It leads to an overall pressure peak of

Figure 16 Interaction of the shock wave with the body
(time=1.55ms).

Figure 17 Stress wave reflection in the liver.

ps = pa +∆ps ≈ 275 KPa. An estimate of the reflected
overpressure ∆pr can be calculated from the standard
Rankine-Hugoniot relations for the Euler equations (cf.
[23]). For the normal reflection of a planar shock on a
rigid fixed wall we obtain

∆pr = 2∆ps + [γ + 1]
1
2
ρsu

2
s ,

us = ∆psca

√
2
γpa

1√
[γ + 1]∆ps + 2γpa

,

where us denotes the fluid velocity behind the shock and
ca the ambient sound speed. For γ = 1.4, these relations
lead to the simple form

∆pr ' 2∆ps
7pa + 4∆ps

7pa +∆ps
∈ [2∆ps; 8∆ps] , (38)

which yields ∆pr ≈ 560 KPa for ∆ps ≈ 175 KPa. The
absolute reflected pressures obtained in the simulation
are shown in Fig. 16. The peak values are in the order of
600 KPa, which is lower than the value pr = pa +∆pr ≈
660 KPa obtained from equation (38), as expected.

A Virtual Test Facility for the Simulation of Solid Material Response under Strong Shock Wave Loading 17

Finally, we discuss briefly the effects of the blast wave
on the body. One of the main mechanisms of internal in-
jury due to blast is related to the impedance mismatch
between air and fluid-filled organs in the human body.
This significantly affects the propagation of stress waves
transmitted by the blast and causes stress concentra-
tions and localized deformations at high rates which are
responsible for tissue failure and injury. The mitigat-
ing effect of the fluid-solid interaction which reduces the
amount of impulse transmitted to the body is not well
understood, especially when strong compressibility ef-
fects are important, as is the case in air blasts. Figures 15
to 17 show different snapshots of the transmitted stress
waves propagating in the torso and their interactions
with the liver as measured by the elastic strain energy
density. Despite the significant idealizations of this sim-
ulation, it is clear that this approach provides a viable
strategy for exploring material systems for blast-injury
mitigation.

6.2 HMX Detonation in a Tantalum Cylinder

The second and final simulation we want to discuss is the
propagation of a detonation wave in a high-energy ex-
plosive material confined in a thick-walled solid cylinder
closed at one end. The properties of the explosive cor-
respond to HMX (C4H8N8O8) and those of the cylinder
material to tantalum.

The volumetric response (17) of tantalum is modeled
by recourse to Vinet’s equation of state as fitted to first-
principle calculations by Cohen et al. [68]. The deviatoric
part of (18) is computed by considering a plastic flow
(20) of the form of a power-law rate-sensitivity, harden-
ing and Steinberg-Guinan [69] pressure dependence

σ̄ (εp, ε̇p, J) =
µ(J)
µ0

σy

(
1 +

εp

εp0

) 1
n

(
1 +

ε̇p

ε̇p0

) 1
m

(39)

in which εp0 denotes a reference plastic strain, ε̇p0 a refer-
ence plastic strain rate, m the rate sensitivity exponent,
n the hardening exponent, σy the initial yield stress, and
µ0 the shear modulus at zero pressure. The material pa-
rameters used in the calculation are collected in Tab. 2.
The dependence of the shear modulus of tantalum on
pressure has been computed by Cohen from first prin-
ciples [68]. We neglect the temperature effect (which is
small according to [68]), the anisotropy of the crystal
and assume isotropic elastic behavior in terms of a shear
modulus. The material behavior is assumed to be adia-
batic.

The fluid part of this simulation uses the entire set of
equations (1) to (5) and in particular the reaction term
(6). The cylinder has length 100 mm and an outer ra-
dius of 18.5 mm. An inner detonation chamber filled with
HMX with radius 8.5 mm and depth 55 mm opens at the
left end of the cylinder. For the fluid initial conditions
at t = 0, we assume a fully developed steady detonation

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 7e+10

 8e+10

 0 0.01 0.02 0.03 0.04 0.05 0.06

p
[P

a]

x [m]

0 µs
1 µs
3 µs
5 µs

Figure 18 Pressure distributions of the detonation wave in
HMX in the inner detonation chamber from a purely hydro-
dynamic one-dimensional simulation.

wave with its front located at x = 10 mm. The deto-
nation is propagating in the positive direction, which is
enforced by the prescription of constant inflow boundary
conditions at the open left end (cf. Fig. 18). No defor-
mations are allowed in the entire solid for x < 10 mm
to model a fully rigid material downstream of the initial
wave. Further, no deformations are possible on the outer
hull of the Ta cylinder for 10 mm ≤ x ≤ 30 mm.

According to Mader [70], unreacted HMX has a den-
sity of ρ0 = 1900 kg/m3, and we assume atmospheric
pressure p0 = 100 KPa in the unreacted material. The
detonation velocity for a freely propagating Chapman-
Jouguet detonation (cf. [21]) in HMX is experimentally
known to be approximately 9100 m/s and the entire hy-
drodynamic flow can be described with reasonable accu-
racy with a constant adiabatic exponent of γ = 3 [70].
The rate factor TR is unknown; we therefore set it to
TR = 1µs, which is a reasonable value for most solid
explosives [21].

The above values specify the process of steady one-
dimensional detonation propagation completely. A det-
onation wave consists of a leading hydrodynamic shock
wave followed by a region of decaying continuous detona-
tion toward chemical equilibrium. The simplified
Chapman-Jouguet theory can be used to evaluate the
energy release of our configuration to be q = 5176 kJ/kg
and to predict the hydrodynamic values in the equilib-
rium state p

CJ
≈ 39.3 GPa and ρ

CJ
≈ 2533 kg/m3. The

steady internal structure can be calculated with the the-
ory of Zeldovich, Neumann, and Döring (ZND), which
constructs an analytic solution of Eqs. (1) to (6). De-

Table 2 Material parameters corresponding to the plastic
response of tantalum (SI units).

εp0 5× 10−4

ε̇p0 3× 10−3

m 12.5
n 5
σy 5× 108

18 Ralf Deiterding et al.

Figure 19 Initiation of stress waves in the solid and com-
pression of the wall material next to the detonation chamber
due to the detonation passage.

tailed derivations of the ZND solution can be found in
the book by Fickett and Davis [21] or, for instance, in
[32]. According to the ZND solution, the peak values
at the head of the detonation are p

vN
≈ 78.7 GPa and

ρ
vN
≈ 3800 kg/m3. We use the analytic ZND solution as

our hydrodynamic initial conditions. Figure 18 displays
the initial pressure distribution and its steady propaga-
tion in a one-dimensional simulation on a uniform mesh
with 960 finite volume cells. At considerably coarser res-
olutions, the reaction front is not resolved with sufficient
accuracy, resulting in an incorrect speed of propagation
and a significant underestimation of the peak value p

vN
.

However, this high resolution is necessary only inside
the reaction zone, which makes the application of very
effective dynamic mesh adaptation possible.

We therefore simulate the three-dimensional fluid
problem in the detonation chamber with a SAMR base
grid of 60 × 60 × 120 cells and use two additional lev-
els of refinement with factors r1 = 2, r2 = 4. While
the solid boundary is adequately refined at the coupling
level lc = 1, level 2 is necessary to capture the deto-
nation wave accurately (adaptation criteria are scaled
gradients of pressure and mass fraction λ). Its effective
resolution corresponds to the uncoupled one-dimensional
simulation shown in Fig. 18. To allow for large defor-
mations of the cylinder walls, the fluid domain spans
30 mm× 30 mm× 60 mm, but only the flow in the inner
detonation chamber is simulated. Zero pressure values
are exported to all interface mesh points at the outer
hull within the fluid domain. The simulation shown in
the Figs. 19 to 21 uses a solid mesh of 56,080 elements.

Figure 20 Strong material compression in constrained and
outward movement of unconstrained walls and the strong
compression in axial direction due to the impact event.

With target CFL conditions of 0.6 in the fluid and 0.2 in
the solid, we simulate the entire detonation process and
a small portion of the purely hydrodynamic shock wave
reflection at the closed end of the tube propagating back-
wards through the fully reacted material. The final time
is set to 5.8µs, and it takes about 400 fluid root level
base steps to reach it. K = 4 sub-iterations are used in
the solid, which corresponds to approximately 3200 solid
update steps. The distance parameter δ is chosen as in
Sec. 6.1.

Throughout the simulation, the SAMR mesh increa-
ses from an initial size of approximately 706 k cells on
level 1 and 6.5 M on level 2 to about 930 k and 10.0 M,
respectively. The number of grids on both levels varies
between 400 and 1000. Compared with a uniform fluid
mesh of 480 × 480 × 960 ' 221 M cells, that would
otherwise be necessary to capture the detonation with
similar accuracy, mesh adaptation clearly provides enor-
mous savings. Figure 21 shows the highly localized fluid
mesh refinement in the midplane for the second snapshot
shown in Fig. 19.

The simulation ran on 4 nodes of a Pentium-4 2.4 GHz
dual-processor system connected with Quadrics inter-
connect for about 63 h real time. Six processes were ded-
icated to the adaptive fluid simulation, while two were
used for the smaller solid problem. The signed distance
calculation with the CPT algorithm takes only 0.8 % of
the computational costs on the fluid nodes, which im-
pressively confirms the practical applicability of the idea
of implicit geometry representation for evolving surface
meshes of moderate size.

A Virtual Test Facility for the Simulation of Solid Material Response under Strong Shock Wave Loading 19

Figure 21 Schlieren plot of the density on regions covered
by SAMR level 1 (blue) and 2 (red) inside the deforming
cylinder for t = 3.0 µs.

Snapshots of the simulation displaying a cut through
the hydrodynamic pressure distribution and the normal
stress in the axial direction are shown in the Figs. 19
and 20. The graphics show several salient features of this
coupled problem: the superseismic loading of the lower-
impedance cylinder walls leading to an inclined shock
front in the solid (Fig. 19), the ensuing large deforma-
tions of the cylinder wall (Fig. 20 and lower graphic of
Fig. 19), the reflection of the shocks in the solid at the
constrained outer cylinder wall (Fig. 20), and the trans-
mission of a high-intensity shock into the solid target
(lower graphic of Fig. 20). In the last shown time step,
the HMX is fully depleted and a non-reactive, purely
hyrdodynamic, shock wave, caused by the reflection of
the detonation wave at the target, can be seen to prop-
agate upstream in the fluid.

7 Conclusions

A loosely coupled fluid-structure interaction method for
the time-accurate simulation of solid materials respond-
ing dynamically to strong shock and detonation waves
arising from the detonation of high-energetic materials
has been presented. The approach utilizes a Lagrangian
finite element solver for large deformations and a Carte-
sian dynamically adaptive finite volume solver with the
capability to deal with moving embedded boundaries
via a ghost fluid approach. Both solvers have been par-
allelized for distributed memory machines utilizing do-
main decomposition, and an effective inter-solver com-
munication module has been outlined. An algorithm has
been presented that transforms the triangular solid sur-
face mesh very efficiently into a signed distance function
on the Cartesian grid. The application of the methodol-
ogy to two distinct fluid-structure interaction problems
has also been described. We note that the combined ap-
proach can lead to high efficiencies in the solution of
coupled problems. Particular, our second computational
example, in which a detonation wave in a high-energetic
material impinges on a dynamically deforming tantalum
cylinder, demonstrates the enormous savings in compu-
tational costs that can be obtained through structured

dynamic mesh adaptation in the fluid for the considered
problem class. This calculation required only 504 h CPU,
whereas a simulation with an equivalent fluid unigrid
mesh can be expected to be in the range of > 10, 000 h
CPU.

The overall coupling method has been realized as a
natural extension of the object-oriented C++ framework
on which the adaptive finite volume fluid solver with
embedded boundary capability has been built. We have
discussed its design in detail and highlighted particular
the implementation efficiency that we have gained by
utilizing framework concepts. Further, all newly devel-
oped components are now generically available within
the fluid framework, which already has enabled new,
industry-strength, non-coupled fluid applications in
which very complicate surface meshes derived from CAD
drawings have been used as complex embedded bound-
aries.

Future development efforts will focus on the imple-
mentation of dynamic adaptation and mesh smoothing
techniques for the solid solver, as well as investigations
of the integration of time-implicit methods for both fluid
and solid into the VTF.

References

1. Aivazis M, Goddard W, Meiron D, Ortiz M, Pool J,
Shepherd J (2000) A virtual test facility for simulating
the dynamic response of materials. Comput. Science &
Engineering 2(2):42–53.

2. Cummings J, Aivazis M, Samtaney R, Radovitzky R,
Mauch S, Meiron D (2002) A virtual test facility for the
simulation of dynamic response in materials. J. Super-
comput. 23:39–50.

3. Mauch S, Meiron D, Radovitzky R, Samtaney R (2003)
Coupled Eulerian-Lagrangian simulations using a level
set method. In Bathe K (ed). 2nd M.I.T. Conference on
Computational Fluid and Solid Mechanics, Cambridge,
MA, June 17-20.

4. Arienti M, Hung P, Morano E, Shepherd J (2003) A level
set approach to Eulerian-Lagrangian coupling. J. Com-
put. Phys. 185:213–251.

5. Cirak F, Radovitzky R (2003) A general algorithm
for coupling Lagrangian-shell with Eulerian-fluid for-
mulations. In Proc. IUTAM Symposium on Integrated
Modeling of Fully Coupled Fluid-Structure Interactions
Using Analysis, Computations and Experiments, New
Brunswick, NJ, June 1-6 2003. International Union of
Theoretical and Applied Mechanics.

6. Löhner R, Baum J, Charman C, Pelessone D (2003)
Fluid-structure interaction simulations using parallel
computers. Lecture Notes in Computer Science 2565,
Springer, Berlin, pp. 3–23.

7. Cirak F, Radovitzky R (2005) A Lagrangian-Eulerian
shell-fluid coupling algorithm based on level sets. Com-
puters and Structures 83:491–498.

8. Löhner R, Cebral J, Yang C, Baum J, Mestreau E, Char-
man C, Pelessone D, (2004) Large-scale fluid-structure
interaction simulations. Comput. Science & Engineering
6(3):27–37.

20 Ralf Deiterding et al.

9. Hu H, Patankar N, Zhu M (2001) Direct numeri-
cal simulations of fluid-solid systems using the arbi-
trary Lagrangian-Eulerian technique. J. Comput. Phys.
169(2):427–462.

10. Mittal R, Iaccarino, G (2005) Immersed boundary meth-
ods. Annu. Rev. Fluid Mech. 37:239–261.

11. Quirk J (1994) An alternative to unstructured grids for
computing gas dynamics flows around arbitrarily com-
plex two-dimensional bodies. Computers Fluids 23:125–
142.

12. Berger M, Helzel C (2002). Grid aligned H-box methods
for conservation laws in complex geometries. In Proc.
3rd Int. Symp. Finite Volumes for Complex Applications,
Porquerolles.

13. Fedkiw R (2002) Coupling an Eulerian fluid calculation
to a Lagrangian solid calculation with the ghost fluid
method. J. Comput. Phys. 175:200–224.

14. Tam D, Radovitzky R, Samtaney R (2005) An algorithm
for modelling the interaction of a flexible rod with a two-
dimensional high-speed flow. Int. J. Numer. Meth. Engi-
neering 64(8):1057-1077.

15. Pantano C, Deiterding R, Hill D, Pullin D (2005). A low-
numerical dissipation patch-based adaptive mesh refine-
ment method for large-eddy simulation of compressible
flows. In Proc. Cyprus Int. Symp. on Complex Effects in
Large Eddy Simulations, Univ. Cyprus, Nicosia.

16. Deiterding R (2005a) Detonation structure simulation
with AMROC. In Lecture Notes in Computer Science
3726, Springer, Berlin pp. 916–927.

17. Deiterding R, Bader G (2005b) High-resolution simu-
lation of detonations detailed chemistry. In Warnecke
G (ed). Analysis and Numerics of Conservation Laws,
Springer, Berlin pp. 69–91.

18. Deiterding R (2005c) A high-resolution method for re-
alistic detonation structure simulation. In Asakura F et
al. (eds). Proc. 10th Int. Conf. on Hyperbolic Problems:
Theory, Numerics, Applications, Yokohama Publishers.

19. Deiterding R (2003) Parallel adaptive simulation of
multi-dimensional detonation structures. PhD thesis,
Brandenburgische Technische Universität Cottbus.

20. Deiterding R (2002) Efficient simulation of multi-
dimensional detonation phenomena. In Handlikova A et
al. (eds). Proc. ALGORITMY 2002, 16th Conf. Scientific
Computing, Slovak Univ. Techn., Bratislava pp. 94–101.

21. Fickett W, Davis W (1979) Detonation. University of
California Press, Berkeley, Los Angeles.

22. Clarke J, Karni S, Quirk J, Roe P, Simmonds L, Toro
E (1993) Numerical computation of two-dimensional un-
steady detonation waves in high energy solids. J. Com-
put. Phys. 106:215–233.

23. Toro E (1999) Riemann solvers and numerical methods
for fluid dynamics. Springer, Berlin, Heidelberg.

24. Einfeldt B, Munz C, Roe P, Sjögreen B (1991) On
Godunov-type methods near low densities. J. Comput.
Phys. 92:273–295.

25. Fedkiw R, Aslam T, Merriman B, Osher S (1999) A non-
oscillatory Eulerian approach to interfaces in multimate-
rial flows (the ghost fluid method). J. Comput. Phys.
152:457–492.

26. Osher S, Fedkiw R (2003) Level set methods and dy-
namic implicit surfaces. Springer, New York.

27. Berger M, Colella P (1988) Local adaptive mesh refine-
ment for shock hydrodynamics. J. Comput. Phys. 82:64–
84.

28. Bell J, Berger M, Saltzman J, Welcome M (1994) Three-
dimensional adaptive mesh refinement for hyperbolic
conservation laws. SIAM J. Sci. Comp. 15(1):127–138.

29. Rendleman C, Beckner V, Lijewski M, Crutchfield W,
Bell J (2000) Parallelization of structured, hierarchical
adaptive mesh refinement algorithms. Computing and
Visualization in Science 3.

30. Parashar M, Browne J (1997) System engineer-
ing for high performance computing software: The
HDDA/DAGH infrastructure for implementation of par-
allel structured adaptive mesh refinement. In Structured
Adaptive Mesh Refinement Grid Methods, IMA Volumes
in Mathematics and its Applications, Springer.

31. Deiterding R (2005d) AMROC - Blockstructured
Adaptive Mesh Refinement in Object-oriented C++.
http://amroc.sourceforge.net.

32. Deiterding R (2005e) Construction and application of an
AMR algorithm for distributed memory computers. In
Plewa T et al. (eds). Lecture Notes in Computational
Science and Engineering 41, Springer, New York, pp.
361–372.

33. Parashar M, Browne J (1996) On Partitioning Dynamic
Adaptive Grid Hierarchies. In Proc. of the 29th Annual
Hawaii Int. Conf. on System Sciences.

34. MacNeice P, Olson K, Mobarry C, deFainchtein R,
Packer C (2000) PARAMESH: A parallel adaptive mesh
refinement community toolkit. Computer Physics Com-
munications 126:330–354.

35. Booch G, Rumbaugh J, Jacobsen I (1999) The unified
modeling language user guide, Addison-Wesley, Reading,
Massachusetts.

36. Marsden J, Hughes T (1993) Mathematical foundations
of elasticity. Dover Publications.

37. Lew A, Radovitzky R, Ortiz M (2002) An artificial-
viscosity method for the lagrangian analysis of shocks
in solids with strength on unstructured, arbitrary-order
tetrahedral meshes. J. Comput-Aided Mater. Des. 8:213–
231.

38. Von Neumann J, Richtmyer R (1950) A method for the
numerical calculation of hydrodynamic shocks. J. Appl.
Physics, 21:232–243.

39. Lubliner J (1972) On the thermodynamic foundations of
non-linear solid mechanics. Int. J. Non-Linear Mechanics
7:237–254.

40. Radovitzky R, Ortiz M (1999) Error estimation and
adaptive meshing in strongly nonlinear dynamic prob-
lems. Computer Methods in Applied Mechanics and En-
gineering 172:203–240.

41. Ortiz M, Stainier L (1999) The variational formulation
of viscoplastic constitutive updates. Computer Methods
in Applied Mechanics and Engineering 171:419–444.

42. Cuitino A, Ortiz M (1992) Material-independent method
for extending stress update algorithms from small-strain
plasticity to finite plasticity with multiplicative kinemat-
ics. Engineering Computations 9(4):437–451.

43. Stainier L, Cuitino A, Ortiz M (2002) A micromechanical
model of hardening, rate sensitivity and thermal soften-
ing in bcc single crystals. J. Mechanics and Physics of
Solids 50:1511-1545.

A Virtual Test Facility for the Simulation of Solid Material Response under Strong Shock Wave Loading 21

44. Kambouchev N, Fernandez J, Radovitzky R (2005) Poly-
convex Model for Materials with Cubic Anisotropy.
http://arxiv.org/abs/cond-mat/0505178.

45. Benson D (1992) Computational methods in Lagrangian
and Eulerian hydrocodes. Computer Methods in Applied
Mechanics and Engineering 99:235–394.

46. Ciarlet P (1976) Numerical analysis of the finite element
method. Les Presses de L’Universite de Montreal, Que-
bec.

47. Belytschko T (1983). An overview of semidiscretiza-
tion and time integration procedures. In Belytschko T,
Hughes T (eds). Computational Methods for Transient
Analysis, North-Holland, pp. 1–65.

48. Hughes T (1983). Analysis of transient algorithms with
particular reference to stability behavior. In Belytschko
T, Hughes T (eds) Computational Methods for Transient
Analysis, North-Holland, pp. 67–155.

49. Kane C, Marsden J, Ortiz M, West M (2000) Variational
integrators and the Newmark algorithm for conservative
and dissipative mechanical systems. Int. J. Numer. Meth.
Engineering 49:1295–1325.

50. Deiterding R, Cirak F, Mauch S, Meiron, D (2006) A vir-
tual test facility for simulating detonation-induced frac-
ture of thin flexible shells. In Alexandrov V et al. (eds)
Lecture Notes in Computer Science 3992, Springer, pp.
122–130.

51. Karypis G (2001) METIS - family of multilevel
partitioning algorithms. http://www-users.cs.umn.edu/
k̃arypis/metis.

52. Liu A, Joe B (1996) Quality local refinement of tetra-
hedral meshes based on 8-subtetrahedron subdivision.
Math. Comput. 65:1183-1200.

53. Stainier L, Radovitzky R, Ortiz M (1999) Constitu-
tive modeling of Tantalum crystals and polycrystals. In
Croitoro E (ed). Proc. 1st Canadian Conference on Non-
linear Solid Mechanics, Victoria, BC, pp. 203–213.

54. Radovitzky R and Cuitiño A (2003) Direct nu-
merical simulation of polycrystals. In Proc. 44th
AIAA/ASME/ASCE/AHS Structures, Structural Dy-
namics, and Materials Conference, Norfolk, AIAA.

55. Zhao Z, Radovitzky R, Kuchnicki S, Cuitino A (2003)
Dynamical evolution of texture in polycrystalline metals
under high strain-rate conditions. In Proc. Int.Symp. on
Plasticity and its Current Applications, Quebec City.

56. Cuitino A, Radovitzky R (ed) (2004) Multiscale Material
Modeling and Simulation. J. Modelling and Simulation
in Materials Science and Engineering.

57. Zhao Z, Radovitzky R, Cuitino A (2004) A study of sur-
face roughening in fcc metals using direct numerical sim-
ulation. Acta Materialia 52:5791–5804.

58. Kuchnicki S, Cuitino A, Radovitzky R (2005) Efficient
and robust constitutive integrators for single-crystal
plasticity modeling. Int. J. Plasticity, submitted.

59. Sethian J (1999) Level Set Methods and Fast Marching
Methods. Cambridge University Press, Cambridge, UK.

60. Johnson D, Cohen E (1998). In Proc. IEEE Intl. Conf.
Robotics & Automation, Leuven, pp. 3678–3684.

61. Mauch S (2003) Efficient Algorithms for Solving Static
Hamilton-Jacobi Equations. PhD thesis, California Insti-
tute of Technology.

62. Foley J, van Dam A, Feiner S, Hughes J (1996)
Computer Graphics: Principles and Practice. Addison-
Wesley, Reading, Massachusetts.

63. Watt A (1993) 3D Computer Graphics. Addison-Wesley,
Reading, Massachusetts.

64. Park K, Felippa C, Deruntz J (1997). Stabilization of
staggered solution procedures for fluid-structure interac-
tion analysis. In Belytschko T, Geers T (eds). Compu-
tational Methods for Fluid-Structure Interaction Prob-
lems, New York, pp. 94–124.

65. Zhang Q, Hisada T (2004) Studies of the strong coupling
and weak coupling methods in FSI analysis. Int. J. Nu-
mer. Meth. Engineering 60:2013–2029.

66. Taylor G, (1950) The formation of a blast wave by a very
intense explosion, I theorical discussion. Proc. of Royal
Society Series A 201(1065):159–174.

67. Brode H (1955) Numerical solution of spherical blast
waves. J. Appl. Phys. 26(6):766–775.

68. Cohen R, Gülseren O (2001) Thermal equation of state
of tantalum. Physical Review B 63:3363.

69. Steinberg D, Cochran S, Guinan M (1980) A constitutive
model for metals applicale at high-strain rate. J. Appl.
Physics 51:1498–1504.

70. Mader C (1979) Numerical modeling of detonations. Uni-
versity of California Press, Berkeley, Los Angeles.

	Introduction
	Eulerian Fluid Dynamics
	Lagrangian Formulation of Solid Dynamics
	Closest-Point-Transform Algorithm
	Fluid-Structure Coupling
	Examples of Application
	Conclusions

