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Abstract. The fluid-structure interaction simulation of detonation- and shock-wave-
loaded fracturing thin-walled structures requires numerical methods that can cope with large
deformations as well as topology changes. We present a robust level-set-based approach
that integrates a Lagrangian thin shell finite element solver with fracture and fragmenta-
tion capabilities with an Eulerian Cartesian detonation solver with optional dynamic mesh
adaptation. As computational application, the induction of large plastic deformations and
the rupture of thin aluminum tubes due to the passage of ethylene-oxygen detonation waves
is presented.

1 INTRODUCTION

The Center for Simulation of Dynamic Response of Materials at the California In-
stitute of Technology has developed a virtual test facility (VTF) for studying the three-
dimensional dynamic response of solid materials subjected to strong shock and detonation
waves propagating in fluids [1, 24, 14]. The VTF targets highly coupled problems, such as
the high rate deformation of metals due the explosion of high-energetic materials or the
rupture and fragmentation of brittle materials under shock wave impact. This application
regime requires the coupled utilization of computational fluid dynamics (CFD) solvers for
compressible hydrodynamics and computational solid dynamics (CSD) solvers for large
plastic material deformations. CFD and CSD solvers both need to be time-accurate and
have to consider all arising supersonic wave phenomena (shear and dilatation waves in
the plastic solid, shock waves in the compressible fluid) correctly. Applicable numerical
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schemes are usually shock-capturing and time-explicit. Hence, we employ a straightfor-
ward temporal splitting technique for coupling in which CFD and CSD solver exchange
data only at the interface between disjoint computational domains after consecutive time
steps. For compressible fluids, stable solutions are obtained reliably with such a “weakly
coupled” method, when the evolving interface geometry and velocities are imposed as
boundary conditions on the CFD solver and the hydrodynamic pressure is used as force
boundary condition acting on the solid exterior [27, 3, 20].

While a Lagrangian representation is most suitable to account numerically for large
solid deformations, contact and fracture, shock-capturing methods for compressible flows
are most easily formulated in an Eulerian frame of reference [1]. The idea behind the
VTF is therefore to develop a fluid-structure interaction (FSI) framework, including fluid
mesh adaptation, that supports above coupling methodology and allows the embedding
of propagating triangulated surface meshes derived from an arbitrary CSD solver into
easily exchangeable Cartesian Eulerian CFD solvers. This concept facilitates solver re-
use and modularization (see also [21] for further discussion of modular concepts for FSI
simulation). Specific to the VTF is that scalar level set functions storing the distance
information to the embedded surface are used to represent the complex geometry on
the Cartesian fluid mesh and a ghost-fluid-type approach is employed to impose fluid
boundary conditions [16, 15, 3].

In the present paper, we apply the VTF to the challenging problem of simulating the
deformations and fracture of thin-walled aluminum tubes due to the passage of gaseous
detonations in ethylene-oxygen mixtures [6]. The configuration under investigation is mo-
tivated by accidents in cooling systems of power-plants and will serve as a validation case
for the VTF. In Sec. 2, we sketch the adaptive Cartesian finite volume fluid solver with
level-set-based embedded boundary capability and also detail the employed detonation
model. Section 3 describes the CSD solver that has been developed to enable FSI simula-
tions of thin-walled (possibly fracturing) solid structures [10]. The solver is founded on a
Kirchhoff-Love type thin-shell formulation in Lagrangian coordinates and achieves a con-
sistent finite element discretization of the underlying energy functional even in the case
of fracture by employing subdivision elements. In Sec. 4, we outline the highly efficient
auxiliary algorithm based on geometric characteristic reconstruction and scan conversion
that we have developed to transform evolving triangulated surface meshes efficiently into
signed or unsigned distance functions. The fluid-structure coupling algorithm and its
implementation on distributed memory computing platforms are described in Sec. 5. In
Sec. 6, we present a series of computations, including the comparison with experimental
results, that validate our methodology for detonation-driven large plastic deformations
and discuss preliminary results for the rupturing case.

2 EULERIAN DETONATION SOLVER

The governing equations of detonation wave propagation in gases are the inviscid Euler
equations [17]. Throughout this paper, we consider only the simplified case of a single
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exothermic chemical reaction A −→ B with a progress variable Y corresponding to the
mass fraction ratio between the partial density of the reactant A and the total density ρ,
i.e. Y = ρA/ρ. The governing equations of the hydrodynamic model are

∂tρ + ∇ · (ρu) = 0 ,
∂t(ρu) + ∇ · (ρu⊗ u) +∇p = 0 ,
∂t(ρE) + ∇ · ((ρE + p)u) = 0 ,
∂t(Y ρ) + ∇ · (Y ρu) = ψ .

(1)

Herein, u is the velocity vector and E the specific total energy. The hydrostatic pressure
p is given by p = (γ − 1)(ρE − 1

2
ρuT u− ρY q) with γ denoting the ratio of specific heats

and q the heat release due to the chemical reaction per unit mass.

2.1 Constant-volume burn detonation model

A one-step reaction would typically be modeled with an Arrhenius law such as [17]

ψ = −kY ρ exp

(
−EAρ

p

)
, (2)

but in the specific case considered here, we utilize the constant volume burn model sug-
gested by Mader [22]. This model neglects the detailed chemical depletion, and therefore
the internal detonation structure, but ensures the right propagation speed and the correct
state in chemical equilibrium at all grid resolutions. The model is intended to be applied
together with the fractional step method that numerically decouples chemical reaction
and hydrodynamic transport. First, the homogeneous system (1) is advanced at a full
time step, then the reactant density ρA, pressure p, and total energy E are modified lo-
cally in each cell; the total density ρ and the velocity vector u remain unaltered. The
algorithm for the detonation model reads:

V := ρ−1, V0 := ρ−1
0 , VCJ := ρCJ

Y ′ := 1− (V − V0)/(VCJ − V0)
if 0 ≤ Y ′ ≤ 1 and Y > 10−8

if Y < Y ′ and Y ′ < 0.9 then Y ′ := 0
if Y ′ < 0.99 then p′ := (1− Y ′)pCJ else p′ := p
ρA := Y ′ρ, E := p′/(ρ(γ − 1)) + Y ′q0 + 1

2
uT u

In the latter, the index 0 indicates the unreacted state (assumed to be constant), while
CJ refers to the equilibrium values that can be calculated in advance following Chapman-
Jouguet theory [17, 12] for a given detonation velocity.

2.2 Finite volume scheme with thin-walled embedded structures

As shock-capturing finite volume upwind scheme, we utilize a straightforward exten-
sion of the flux-vector splitting method by Van Leer (cf. [12]). Second-order accuracy in
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smooth solution regions is achieved with the MUSCL-Hancock variable extrapolation tech-
nique [28]. Geometrically complex moving boundaries are incorporated into the upwind
scheme by using some of the finite volume cells as ghost cells for enforcing immersed mov-
ing wall boundary conditions [16]. The boundary geometry is mapped onto the Cartesian
mesh by employing a scalar level set function φ that stores the unsigned distance to the
boundary surface and allows the efficient evaluation of the boundary outer normal in every
mesh point as n = −∇φ/|∇φ|. Note that for topologically closed boundary surfaces the
signed distance may be used instead of the unsigned distance [10]. A cell is considered to
be a valid fluid cell, if the distance at the cell midpoint satisfies the condition φ > h/2 and
as an exterior ghost cell otherwise. The mesh received from the shell solver corresponds
to a two-dimensional manifold surface mesh (cf. Sec. 3) and the utilization of condition
φ > h/2 is a straightforward, unambiguous solution to achieve the mandatory thickening
of this mesh by the shell thickness h. The contour line φ = h/2 effectively represents the
embedded boundary for the fluid solver (depicted as dotted line around shell elements in
Fig. 1). The hydrodynamic load on each shell element is evaluated as the difference be-
tween the approximated pressure values at φ = h/2 in the positive and negative direction

p
+

p
-

Figure 1: Ghost cells (shaded gray) around
shell elements and construction of mirrored
values.

of each element’s normal, i.e. pF := p+ − p−.
For the governing equations (1), the boundary

condition at a rigid wall moving with velocity w
is u · n = w · n. Enforcing the latter with ghost
cells, in which the discrete values are located at the
cell centers, requires the mirroring of the primitive
values ρ, u, p, ρA across the embedded boundary.
The normal velocity in the ghost cells is set to
(2w · n − u · n)n, while the mirrored tangential
velocity remains unmodified. Mirrored values are
constructed by calculating spatially interpolated
values in the point x̃ = x+2φn from neighboring
interior cells. We employ a dimension-wise linear
interpolation for this operation, but it has to be
emphasized that directly near the boundary the
number of interpolants needs to be decreased to ensure the monotonicity of the numerical
solution. This property is essential in simulating hyperbolic problems with discontinuities,
like detonation waves. Figure 1 also highlights the necessary reduction of the interpolation
stencil for some exemplary cases. The interpolation locations are indicated by the origins
of the arrows normal to the contour line that defines the embedded boundary. After the
application of the numerical scheme, cells that have been used to impose internal boundary
conditions are set to the entire state vector of the nearest cell in the fluid interior. This
operation ensures proper values in case such a cell becomes a regular interior cell in the
next step due to boundary movement. The consideration of w in the ghost cells guarantees
that the embedded boundary propagates at most one cell in every time step.
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Note that the described technique does not require a modification of the numerical
stencil itself and is therefore generically applicable, but causes a diffusion of the boundary
location throughout the method and results in an overall non-conservative scheme. We
alleviate such errors and the unavoidable staircase approximation of the boundary with
this approach effectively by using the dynamic mesh adaptation technique described in the
next sub-section to also refine the Cartesian mesh appropriately along the boundary. Some
authors have also presented cut-cell techniques that utilize the correct boundary flux [26,
5], but the proposed numerical circumventions of the severe time step restriction in time-
explicit schemes, that can result from small cells created by the boundary intersection,
are inherently complicate and most approaches have not been extended successfully to
three space dimensions yet.

2.3 Structured adaptive mesh refinement

In order to supply a fine local temporal and spatial resolution efficiently, the finite
volume scheme described above has been incorporated into the block-structured adaptive
mesh refinement (SAMR) method after Berger and Colella [4]. Characteristic for the
idea of structured mesh adaptation is that the finite volume method is technically not
implemented in a cell-based fashion but rather in a routine which operates on equidistant
subgrids. The subgrids become computationally decoupled during one update through
the use of ghost or halo cells. Cells being flagged for refinement (shaded in Fig. 2)
are clustered recursively into non-overlapping rectangular subgrids and a hierarchy of
successively embedded levels is thereby constructed (cf. Fig. 2). All mesh widths on
level l are rl-times finer than on level l − 1, i.e. ∆tl := ∆tl−1/rl and ∆xk,l := ∆xk,l−1/rl

with rl ≥ 2 for l > 0 and with r0 = 1, and a time-explicit finite volume scheme will (in
principle) remain stable on all levels of the hierarchy.

Different levels are integrated recursively in time allowing the derivation of temporally
and spatially interpolated boundary conditions of Dirichlet-type from the coarser level at

Figure 2: SAMR hierarchy.

coarse-fine interfaces. Values of cells covered by finer
subgrids are overwritten by averaged fine grid val-
ues subsequently. This operation leads to a modifi-
cation of the numerical stencil on the coarse mesh and
requires a special flux correction in cells abutting a
fine grid. In order to ensure discrete conservation (at
least for purely Cartesian problems without embedded
boundaries), but particular to enforce a vonNeumann-
type boundary condition matching at coarse-fine in-
terfaces subsequently, the coarse flux approximation
adjacent to modified coarse level cells is replaced with
the sum of all overlying fine level fluxes. See [4] or [12]
for details.

SAMR in the VTF is provided generically by the
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AMROC (Adaptive Mesh Refinement in Object-oriented C++) framework [2]. AMROC
has been parallelized effectively for distributed memory machines [13] and can be used
on all systems that provide the MPI library. The parallelization strategy is a rigorous
domain decomposition approach that partitions the SAMR hierarchy from the root level
on. The key idea is that all higher level domains are required to follow this “floor plan”.
In AMROC, a generalization of Hilbert’s space-filling curve [25] is currently used to derive
load-balanced root level distributions at run time.

3 LAGRANGIAN THIN-SHELL SOLVER

The Kirchhoff-Love type thin-shell model applied in this study takes the membrane as
well as bending response of the surface into account, and has been discretized with sub-
division finite elements [7, 8]. The underlying kinematic assumptions allow for arbitrarily
large displacements as well as rotations of the shell. Fracture initiation and propagation
is considered as a progressive failure phenomenon in which the separation of the crack
flanks is resisted by cohesive tractions. The relationship between the crack-opening dis-
placements and the tractions is given by a cohesive model. Cohesive interface elements
are inserted at inter-element edges and constrain the opening of the crack flanks to the
deformation of the shell middle surface and its normal. This approach allows for fracture
in an in-plane or tearing mode, a shearing mode, or a “bending of hinge” mode.

To kinematically describe a fractured thin-shell as sketched in Fig. 3, we consider a shell
of uniform thickness h occupying an undeformed configuration V . The position vector

Figure 3: Fractured shell body: Oppo-
site crack flanks and corresponding nor-
mals.

ϕ of a material point on the undeformed shell body is
assumed to be

ϕ = x + θ3n (3)

with −h/2 ≤ θ3 ≤ h/2. The position vector of the
shell middle surface is denoted by x and its out-of-
surface unit normal by n. In other words, the shell
middle surface represents a two-dimensional manifold
in IR3. The deformation mapping ϕ maps the shell
body into the deformed configuration V and is dis-
continuous across the crack, i.e.

[[ϕ]] = ϕ+ −ϕ− = [[x]] + θ3[[n]] , (4)

where the superscripts + and − refer to the opposing crack flanks. Further, the first
term describes the discontinuity of the deformation of the middle shell surface, and the
second term the discontinuity in the shell out-of-surface normal. The discontinuities in
the deformations can also be interpreted as the opening displacement of the crack.

A standard semi-inverse approach is followed for obtaining the shell equilibrium equa-
tions in weak from. To this end, the assumed reduced kinematic equations for the shell
body (Equations (3) and (4)) are introduced into the conventional virtual work expres-
sion for the three-dimensional body. As previously mentioned, we consider fracture as a
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gradual separation phenomenon, resisted by cohesive tractions. Consequently, the inter-
nal virtual work expression contains the virtual work of the cohesive interface (δΠC,int) in
addition to the virtual work of the bulk material (δΠS,int)

δΠS,int + δΠC,int − δΠext = 0 (5)

with

δΠS,int =

∫
Ω

∫ h/2

−h/2

P : δF µ dθ3dΩ , δΠC,int =

∫
ΓC

∫ h/2

−h/2

T · [[ϕ]]µ dθ3dΓC ,

where P is the first Piola-Kirchhoff stress tensor, T the related traction vector at the
cohesive surface, and F the deformation gradient. The virtual work expression for the
bulk material is integrated over the undeformed shell middle surface Ω and for the cohesive
interface over the crack path ΓC . The scalar factor µ accounts for the curvature of the
shell in the volume computation [8].

Next, we briefly outline the discretization of the governing equation (5). A detailed
presentation of the used subdivision finite element discretization technique can be found
in [7] and [8]. In this approach, the reference (x) and deformed (x) shell surfaces are
approximated using smooth subdivision surfaces belonging to the Sobolev space H2 with
square-integrable curvatures. The subdivision interpolation within one element is accom-
plished with shape functions, which have support on the element as well as on the one-ring
of neighboring elements. The overlapping local subdivision interpolants, each defined over
one patch, together lead to a global interpolant with square-integrable curvatures.

In the presence of fracture, the smoothness and/or continuity of the interpolation has
to be relaxed and the subdivision interpolant needs to be modified (see [9] for details).

Figure 4: One cohesive edge and the two elements
with their one neighborhoods

The topological changes necessary to the non-
local subdivision functions and the under-
lying control mesh in order to describe the
propagation of a single crack are complicated.
Therefore, we chose to pre-fracture the ele-
ment patches, such that each patch possesses
its own nodes and acts independently for the
purpose of interpolation. Each element patch
consists of a triangular element and the nodes
in its neighborhood (see Fig.4). Prior to crack nucleation, the coupling of the elements is
enforced by appying stiff elastic cohesive interfaces at all non-cracked edges. Once frac-
ture nucleates along an element edge, the element patches on both sides of the cracked
edge interact through cohesive tractions. The cohesive tractions are self-balanced internal
forces derived from a cohesive fracture model [9]. In this model, the opening displacement
[[ϕ]] plays the role of a deformation measure while the traction T is the conjugate stress
measure.
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Finally, the inelastic behavior of the bulk material, i.e. the relation between P and F ,
is described with a conventional J2 plasticity model with isotropic power-law hardening
[11]. The power-law hardening for the flow stress g has the form

g(εp) = σy

(
1 +

εp

εp0

)1/n

, (6)

where σy is the initial yield stress, εp and εp0 are the total and the reference plastic strains,
respectively, and 1/n is the hardening exponent. The rate-dependent behavior is described
in terms of the effective von Mises stress σeff with a power viscosity law and constant rate
sensitivity

σeff = g(εp)

(
1 +

ε̇p

ε̇p0

)1/m

, (7)

where ε̇p0 is the reference plastic strain rate and 1/m the strain rate sensitivity exponent.

4 EFFICIENT LEVEL SET EVALUATION

In Sec. 2, we have sketched the concept of employing a distance function to represent
a complex embedded boundary on a Cartesian mesh. While distance functions are easily
prescribed for single elementary geometric objects, their evaluation can be cumbersome
for complex shapes. In coupled Eulerian-Lagrangian simulations, this complex shape is
defined by the deforming shell surface mesh.

One can efficiently compute the distance on a grid by solving the eikonal equation with
the method of characteristics and utilizing polyhedron scan conversion [23]. For a given
grid point, the relevant closest point on the triangular mesh lies on one of the primitives
(faces, edges and vertices) that comprise the surface. The characteristics emanating from
each of these primitives form polyhedral shapes. Such a characteristic polyhedron contains
all of the points which are possibly closest to its corresponding face, edge or vertex. The
closest points to a triangle face must lie within a triangular prism defined by the face
and its normal; the closest points to an edge lie in a cylindrical wedge defined by the line
segment and the normals to the two incident faces (see Fig. 5 for face (a) and edge (b)

Figure 5: The characteristic polyhedra for faces
and edges of an icosahedron.

Figure 6: Scan conversion of a polygon in 2-D
and slicing of a polyhedron to form polygons.
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polyhedra for a particular example). Analogously, polygonal pyramids emanating from
the vertices are also possible (not shown). We then determine the grid points that lie
inside a characteristic polyhedron with polyhedron scan conversion. The polyhedron is
first sliced along each sheet of the grid lattice to produce polygons, cf. Fig. 6. Simple
geometric formulas are finally used to calculate the distance once a polyhedron has been
assigned uniquely to each grid point.

By utilizing the outlined techniques, and evaluating the distance exactly only within
a small distance around the surface, a highly efficient algorithm can be formulated that
has linear computational complexity both in the number of Cartesian mesh points and
the surface triangles [23, 14].

5 FLUID-STRUCTURE COUPLING

The explicit fluid and solid solvers are weakly coupled by successively applying appro-
priate boundary conditions in a time-operator splitting technique. In the case of inviscid
flows, the compatibility conditions are simply the continuity of the velocity component
normal to the embedded boundary un in solid (S) and fluid (F), i.e. uS

n = uF
n , and the

continuity of the normal component of the solid’s Cauchy traction vector, pS = (σn)n
with σ = 1/det(F )FP , and the hydrodynamic pressure pF , i.e pS = pF . We use the
following update algorithm to implement these coupling conditions numerically:

update φ(t)

w
+/−
F := uS(t)

update fluid( ∆t )
pS := pF (t+ ∆t)
update solid( ∆t )
t := t+ ∆t

After evaluating the distance function φ for the currently available shell surface mesh, the
embedded wall boundary velocities for the fluid solver are set to the solid velocities in the
nearest shell element midplane. The same velocity w is enforced in the fluid on upper (+)
and lower (−) side of each element. After setting embedded rigid wall boundary conditions
as sketched in Sec. 2 and the fluid update, a new hydrodynamic pressure load pF := p+−p−
on each shell element is derived (compare Fig. 1). With these new boundary conditions,
the cycle is completed by advancing the solid by ∆t, which in practice is typically done
by taking multiple, smaller time steps in the solid solver to effectively accommodate the
more restrictive stability condition in the solid.

While the implementation of a loosely coupled FSI method is straightforward with
conventional solvers with consecutive time update, the utilization of the SAMR method
in the fluid is non-apparent. In the VTF, we treat the fluid-solid interface as a dis-
continuity that is a-priori refined at least up to a coupling level lc. The resolution at
level lc has to be sufficiently fine to ensure an accurate wave transmission between fluid
and structure, but will often not be the highest level of refinement. To incorporate the
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fluid-structure data exchange into the recursive SAMR algorithm it has to be ensured
that the updated mesh positions and nodal velocities are received before a regridding
of the coupling level lc is initiated and that the hydrodynamic pressure loadings on the
interface are evaluated after the highest available refinement level has reached the same
discrete time as the updated level lc. We visualize the data exchange between solid

F1

Time

S1 S5S3 S7S2 S6S4 S8

F2

l=0

l=2

l=l =1
c

F5

F3 F6F4 F7

Figure 7: Data exchange between the recursive
CFD solver and the linear thin-shell CSD solver
throughout one SAMR root level time step.

and SAMR fluid solver in Fig. 7 for an exem-
plary SAMR hierarchy with two additional lev-
els with r1,2 = 2. Figure 7 pictures the recur-
sion in the SAMR method by numbering the
fluid update steps (F) according to the order
determined by the SAMR method. The order
of the solid update steps (S) on the other hand
is strictly linear. The red arrows correspond to
the sending of the interface pressures pF from
fluid to solid at the end of each time step on
level lc. The blue arrows visualize the sending
of the interface mesh and its nodal velocities
uS after each solid update. The modification
of refinement meshes is indicated in Fig. 7 by the gray arrows; the initiating base level,
that remains fixed throughout the regridding operation, is indicated by the gray circles.

In our current implementation, CFD and CSD solver are parallelized separately for
distributed memory machines using independent rigorous domain decomposition methods.
In order to facilitate an efficient communication of the distributed fluid-shell boundary
information we have implemented a non-blocking high-level communication library that
determines the necessary point-to-point communication patterns by intersecting Cartesian
bounding boxes enclosing the local domains. Details on this communication library and
also a detailed algorithmic description of the coupled SAMR method can be found in [14].

6 COMPUTATIONAL RESULTS

The configuration we are interested in is an experimental setup developed by Chao
[6]. It consists of a detonation tube of 1.52 m length to which thin-walled aluminum
(Al6061-T6) test tubes are attached. The test specimen have a length from 45.7 cm
to 89.6 cm, an inner radius of 1.975 cm, and a wall thickness of 0.89 mm. While the
lower end of the device is closed, a thin diaphragm seals the upper end. The entire
apparatus is filled with a perfectly stirred combustible mixture of ethylene and oxygen at
equivalence ratio 1 (C2H4 + 3 O2) at room temperature 295 K. The initial pressure varies
from p0 = 80 kPa to p0 = 180 kPa. The mixture is thermally ignited at the closed end
and the combustion transitions quickly to a detonation wave. When it enters the test
specimen, the detonation is close to the Chapman-Jouguet (CJ) limit of quasi-stationary
self-sustained propagation. Its velocity is between 2300 m/s and 2400 m/s and the pressure
values in the fully reacted Chapman-Jouguet state range between pCJ ≈ 2.60 MPa and
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Figure 8: Comparison of the pressure traces at
x = 0.38 m (transducer 1), x = 0.78 m, x =
1.18 m (from left to right) in an experiment and
in a 1d simulation with the CV burn model.
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Figure 9: Left: comparison of pressure distribution
for the one-step chemistry (solid) with the CV burn
model (dashed) 200µs 400µs, 600 µs, and 800µs
after ignition (time steps from left to right).

pCJ ≈ 6.10 MPa, depending on the initial pressure p0. As the lower end of the is closed,
a rarefaction wave occurs immediately behind the detonation, which mandatorily needs
to be considered in accurate numerical simulations. In all computations, we utilize a
constant adiabatic mixture coefficient of γ = 1.24, which is a good approximation to the
value in the CJ state and a reasonable compromise between the constant value behind the
rarefaction wave of ≈ 1.12 and the value 1.4 in the air surrounding tube and specimen.

6.1 Detonation solver validation

In order to ensure the correct function of the detonation model described in Sec. 2.1, we
carry out one-dimensional detonation simulations for an initial pressure of p0 = 100 kPa.
Separate calculations using Chapman-Jouguet theory (cf. [17]) that employ the full GRI
3.0 reaction mechanism predict a detonation velocity of DCJ ≈ 2376 m/s, but we set the
only parameter of the constant-volume burn model, the heat release parameter q, to q =
4.70408075 MJ/kg leading to a detonation velocity of DEx = 2291.74 m/s. This average
speed of propagation has been measured in experiments for the particular configuration
used by Chao [6] in which we are interested in here. We use a one-dimensional setup with
a domain length of 2.15 m encompassing the detonation tube and the longest specimen,
reflective wall boundary conditions at the lower end and zero gradient outflow conditions
at the upper domain boundary. A base mesh of 1148 cells plus one additional level of
dynamic refinement with factor r1 = 4 is employed. The refinement criteria are simple
scaled gradients of total density, pressure and mass fraction Y . In the computation, the
detonation is initiated by setting the values in all cells with midpoint < 5 mm to the CJ
values. Note that is a mandatory computational idealization as the CJ limit is reached
in the experiment only close to the test specimen.

Figure 8 gives a comparison of the temporal pressure traces at the locations x = 0.38 m
(transducer 1), x = 0.78 m, and x = 1.18 m in the one-dimensional simulation with

11



Ralf Deiterding, Fehmi Cirak, Sean P. Mauch and Daniel I. Meiron

experimentally measured pressure traces (time origins in both traces adjusted to t = 0
when the detonation front reaches transducer 1). The agreement is very good considering
the natural fluctuations in experimental measurements and the idealized computational
initial conditions.

To verify the equivalence of the chosen detonation model to fully resolved detonation
computations for the time scales relevant to us, a simulation has been undertaken utilizing
the one-step Arrhenius reaction (2) instead of the CV burn model. Based on stationary
calculations of the internal detonation structure according to the theory after Zel’dovich,
von Neumann, and Döring (see [17] for a detailed account) using the detailed chemical
kinetics of GRI 3.0, we set the activation energy to EA = 25, 000 J/mol and the frequency
parameter to k = 2 · 107 s−1. As the utilization of Eq. (2) requires an extremely high local
resolution in the reaction zone, this comparative computation uses an SAMR base mesh of
4000 cells and three additional levels with identical refinement factors r1,2,3 = 4. Despite
the use of mesh adaptation the computation requires several hours CPU compared to only
seconds in the previous case.

Figure 9 compares the pressure distributions of the one-dimensional computations with
one-step Arrhenius reaction (2) and CV burn model as the detonation propagates down
the tube. Due to a reaction zone in the range of 10−2 to 10−1mm the internal detona-
tion structure with its leading vonNeumann pressure spike appears as an isolated peak
value in Fig. 9. Apparently, it has negligible influence on the Taylor rarefaction wave fol-
lowing immediately behind the detonation front. As our succeeding simulations involve
detonation-structure interaction times of several hundred microseconds it is physically
justified to employ the CV burn model in the following.

6.2 Fluid-structure interaction validation

In three space-dimensions, we ensure the correct consideration of the Taylor rarefac-
tion wave by initializing the flow field with the data from corresponding one-dimensional
simulations taken at the moment when the detonation enters the specimen. While only
the test specimen is simulated in the CSD solver, the CFD solver considers an additional
tubular domain 0.92 m upstream. The extension is modeled by prescribing the level set
function for the embedded boundary method directly and its purpose is to ensure the
correct inflow of the Taylor wave into the specimen.

As a validation test for large plastic material deformations an experiment has been
conducted in which an “H” shape pattern is cut into a specimen of 89.6 cm. Each cut
has a length of 25 mm. One cut is in the longitudinal direction with its midpoint 44.4 cm,
away from the inlet. The two other cuts extend perpendicular into the circumferential
direction. The combustible mixture is the same as in Sec. 6.1. When the detonation
wave passes the pre-flawed region, the two flaps open up and the high pressure in the
Taylor wave causes a venting of the combustion products into the air. To allow for an
undisturbed leakage we use a relative large computational domain of [−92.0 cm, 89.6 cm]×
[−3.75 cm, 56.25 cm]× [−39.0 cm, 39.0 cm], where the beginning of the specimen is set to
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Figure 10: Upper row: color plot of fluid density in plane perpendicular to z-axis and shell displacements
in the z-direction t = 92 µs (left) and t = 212µs (right) after the detonation front had reached the middle
of the longitudinal slot. Lower row: schlieren plot of fluid density in planes perpendicular to x- and z-axis
on different refinement levels (gray).

x = 0. The opening of the flaps and the gaseous venting are visualized in the upper row
of Fig. 10.

In this computation, an SAMR base mesh of 104×80×242 cells with 3 additional level
and refinement factors r1,2 = 2 and r3 = 4 is used. Additional to the refinement criteria
in Sec. 6.1 that capture the detonation front reliably at the highest level, the walls of
the test specimen are always fully refined. The effective resolution at the walls allows for
an offset parameter of h = 0.81 mm, which is less than twice the accurate wall thickness
of 0.445 mm. The refinement is constrained for x < 0, y > 15.0 cm and |z| > 15.75 cm.
The dynamic evolution of the block-structured mesh hierarchy is depicted in the lower
row of Fig. 10. The graphics show schlieren of the fluid density on the three refinement
levels which are visualized by shading their domains in different gray tones. The images
highlight the enormous efficiency gain from dynamic mesh adaptation. An equivalent
unigrid CFD calculation would require > 7.9 · 109 cells, but our SAMR computation uses
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Figure 11: Simulated schlieren pictures of fluid density and side view of the deforming solid mesh
compared to schlieren photo graphs taken in a corresponding experiment.

only ≈ 4.0 · 107 cells on average.
For the CSD sub-problem, we use a triangular input mesh of 17, 056 elements, in

which each base element is subdivided internally into four smaller elements. The initial
mesh is shown in Fig. 12. We employ a J2 plasticity model for aluminum with power-
law hardening and thermal softening as bulk material model [11]. The parameters for our
particular model have been adapted from the Johnson-Cook material parameters reported
by Lesuer et al. [18]. An alternative reference for Al 6061-T651 material parameters is
Warren et al. [29].

Figure 12: Initial mesh for the
CSD shell solver in the coupled
flap opening simulation.

The computation ran on 72 Opteron-2.2 GHz processors
connected with Infiniband network for about 4300 h CPU
to a final time of te = 460µs. 460 coupled time steps with
fixed step size have been simulated, where 5 solid solver
sub-steps were taken in each fluid time step. As the wall
boundary is refined up to the highest level, the coupling
level, cf. Sec. 5, is naturally set to lc = 3. In Fig 11, a series
of schlieren photo graphs from the experiment showing the
fluid venting and flap opening are compared to correspond-
ing simulated images at a nearby time. The computational
graphics display schlieren of the fluid density in the plane
perpendicular to the z-axis together with a side view of the
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Figure 13: Coupled simulation of detonation-driven rupture of a thin aluminum tube. Two snapshots
of the fracturing tube with velocity iso-contours (lower row); cuts through the fluid domain show the
resulting hydrodynamic venting (upper row).

deforming solid mesh. The time origin is set to the moment when the detonation passes
the middle of the longitudinal slot. The agreement in flow evolution and solid defor-
mation is quite good for the shown times steps, which confirms the correct function of
the fluid-structure coupling method and the appropriateness of the chosen computational
setup.

6.3 Detonation-driven fracture simulation

Finally, we present one exemplary fluid-structure interaction computation that involves
the rupture of the test specimen. The initial pressure is p0 = 180 kPa and the specimen
has a length of 45.7 cm. To ensure a reproducible fracture the specimen has a central
longitudinal notch of 6.32 cm at the middle, which is modeled as an initial crack in the
computations. The computational setting is similar as described above, but no fluid mesh
adaptation has been employed yet: The simulation has preliminary character. Fracture
simulations with a similar level of accuracy as the calculation shown in the previous
sub-section are currently carried out.

The material model for the cohesive interface elements is a linearly decreasing envelope
with a plane stress fracture toughness KIC = 30MPa

√
m [9]. In accordance with Li et

al.’s [19] numerical computations of thin-sheet ductile fracture, the crack initiation stress
is chosen to be σc = 2σy, where σy denotes the yield stress of the bulk material.

Figure 13 visualizes the results for a shell mesh of 8665 elements and a uniform Carte-
sian fluid mesh of 40 × 40 × 725 cells that required ≈ 900 h CPU on 27 nodes of a
Pentium-4-2.4 GHz dual processor system (21 fluid and 33 solid processes). 1300 coupled
time steps with fixed step size to a final time of te = 260µs have been calculated (20 solid
solver sub-steps in each fluid time step). The left graphic of Fig. 13 shows the beginning of
the crack opening ≈ 150µs after the detonation has passed the initial crack. The snapshot
on the right shows the rupture at the final time 260µs. The venting of high pressurized
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reacted gas from the opening slit and the cracking of the material are clearly visible. It is
worth pointing out that during this simulation, the dynamic level set evaluation with the
algorithm sketched in Sec. 4 and the update with the core Cartesian finite volume scheme
sketched in Sec. 2.2, have about the same computational costs on each fluid processor.
This result confirms that our approach utilizing distance functions for implicit geometry
representation is sufficiently efficient for computing even complex FSI problems with large
deformations and evolutions in the mesh topology with high computational efficiency.

7 CONCLUSIONS

A weakly coupled parallel level-set-based fluid-structure coupling methodology for the
time-accurate simulation of thin flexible shells dynamically responding to gaseous det-
onation waves has been described. The approach has been demonstrated to handle
arbitrary topology changes and large deformations in reasonable agreement with ex-
perimental results. As enabling components for high computational efficiency we have
highlighted dynamic mesh adaptation in the fluid sub-solver and an effective distance
function evaluation algorithm. The integrated implementation of these components in
the software framework “Virtual Test Facility” is freely available for research purposes
(cf. http://www.cacr.caltech.edu/asc).
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