# Fluid-structure interaction simulation with the Virtual Test Facility

Ralf Deiterding ORNL & Caltech deiterdingr@ornl.gov

May 21, 2007





# Outline

- Introduction
  - Ideas, software
- Fluid solver framework
  - Adaptive mesh refinement, boundary embedding
- Fluid-structure coupling
  - Algorithmic concept, main components
- Examples from different computational solid dynamics solvers
- Simple 2d template application
  - Main codes
  - Demonstration





# The Virtual Test Facility

Infrastructure for fluid-structure interaction simulation of shock- and detonation-driven solid material deformation

Concept:

- Use a level-set-based approach to couple Lagrangian solid mechanics solvers to Eulerian fluid mechanics solvers
- Level set stores the distance to closest point on solid body surface in each Eulerian mesh point
- Distance information is updated on-the-fly as the solid evolves
- Use distance information to consider geometrically complex boundary conditions in a ghost fluid method for Cartesian fluid solvers
- Use block-structured mesh adaptation to mitigate boundary approximation errors
- Eulerian-Lagrangian inter-solver communication library synchronizes the boundary data exchange between coupled solver modules
- Implement all components for distributed memory systems with nonblocking MPI communication routines





# The Virtual Test Facility software

- Freely available infrastructure for fully coupled fluid-structure simulations in 3D and 2D on distributed memory machines
  - Shock-capturing Cartesian finite volume methods for Euler and Navier-Stokes equations (WENO-TCD-LES, AMROC-Clawpack) with SAMR
  - Lagrangian finite elements methods (Adlib, SFC shell solver) with standard material models or rigid body motion for solid simulation
  - Implicit boundary representation with level-set functions (e.g. through CPT), consideration in Cartesian scheme with generic ghost-fluid method (GFM) fully incorporated into SAMR algorithm
- Fully coupled fluid-structure simulations in 3D on distributed memory machines
  - Eulerian-Lagrangian coupling (ELC) module
- Language: objectoriented C++ with components in C, F77, F90. Size ~12MB
- ~430,000 lines of source code (ANSI)
- autoconf/ automake environment with full support for all ASC platforms





# The Virtual Test Facility software

- Freely available infrastructure for fully coupled fluid-structure simulations in 3D and 2D on distributed memory machines
  - Shock-capturing Cartesian finite volume methods for Euler and Navier-Stokes equations (WENO-TCD-LES, AMROC-Clawpack) with SAMR
  - Lagrangian finite elements methods (Adlib, SFC shell solver) with standard material models or rigid body motion for solid simulation
  - Implicit boundary representation with level-set functions (e.g. through CPT), consideration in Cartesian scheme with generic ghost-fluid method (GFM) fully incorporated into SAMR algorithm
- Fully coupled fluid-structure simulations in 3D on distributed memory machines
  - Eulerian-Lagrangian coupling (ELC) module
- Use an online content management system to create the documentation necessary for the release of the VTF software
  - Installation, configuration, examples
  - Scientific and technical papers
  - Archival of key simulation and experimental results
- http://www.cacr.caltech.edu/asc





### Structured AMR (Berger-Colella-type) for hyperbolic problems

• For simplicity

 $\partial_t \mathbf{q} + \nabla \cdot \mathbf{f}(\mathbf{q}) = \mathbf{0}$ 

- Refined subgrids overlay coarser ones
- Computational decoupling of subgrids by using ghost cells
- Refinement in space and time
- Block-based data structures
- Cells without mark are refined
- Cluster-algorithm necessary
- Efficient cache-reuse / vectorization possible
- Explicit finite volume scheme

$$\mathbf{Q}_{jk}^{n+1} = \mathbf{Q}_{jk}^{n} - \frac{\Delta t}{\Delta x_1} \left[ \mathbf{F}_{j+\frac{1}{2},k}^1 - \mathbf{F}_{j-\frac{1}{2},k}^1 \right] - \frac{\Delta t}{\Delta x_2} \left[ \mathbf{F}_{j,k+\frac{1}{2}}^2 - \mathbf{F}_{j,k-\frac{1}{2}}^2 \right]$$

only for single rectangular grid necessary





# UML design of Amroc

- Classical framework approach with generic main program in C++
- Customization / modification in Problem.h include file by derivation from base classes and redefining virtual interface functions
- Predefined, scheme-specific classes (with F77 interfaces) provided for standard simulations
- Standard simulations require only linking to F77 functions for initial and boundary conditions, source terms. No C++ knowledge required.
- User interface mimics Clawpack by R.J. LeVeque
- Expert usage (algorithm modification, advanced output, etc.) in C++





### Available finite volume fluid solvers for Amroc

- Extended Clawpack with for full and one-step chemistry in Fortran 77 (R.Deiterding)
  - Euler equations with various equations of state, mixtures of thermally perfect gases, stiffened gas equation of state for shocked liquids
  - Riemann solvers and flux vector splitting schemes with positivity preservation
  - Reference simulations and coupled simulations, especially with detonation modeling
- WENO-TCD scheme with optional LES and chemical reaction capability in Fortran 90 (D.Hill, C.Pantano)
  - Favre-averaged Navier-Stokes equations
  - Compressible turbulence LES model by D. Pullin
  - Used for turbulence simulations
- Riemann Invariant Manifold Method (Euler equations for polytropic gas) by T. Lappas
- Riemann solver for gas-dynamics with chemistry in C++ (P.Hung)
- Ideal MHD solver by M. Torrilhon (only uniform for now)





# **Ghost fluid method**

- Incorporate complex moving boundary/ interfaces into a Cartesian solver (extension of work by R.Fedkiw and T.Aslam)
- Implicit boundary representation via distance function  $\varphi$ , normal  $n = \nabla \varphi / |\nabla \varphi|$
- Treat an interface as a moving rigid wall
- Method diffuses boundary and is therefore not conservative
- Construction of values in embedded boundary cells by interpolation / extrapolation





- Higher resolution at embedded boundary required than with first-order unstructured scheme
- Problems sensitive to boundary interaction require thorough convergence studies
- Appropriate level-set-based refinement criteria are available to cure deficiencies



# Ghost fluid method in Amroc

- Core algorithm implemented in derived HypSAMRSolver class
- Multiple independent **EmbeddedBoundaryMethod** objects possible
- Base classes are scheme-• independent

LevelSetEvaluation

.0..1<sup>1</sup>

Extra-/Interpolation +calculate in patch()

TITUTE

+set patch()

Specialization of GFM boundary • conditions, level set description in scheme-specific F77 interface classes

+set cells in patch()

EmbeddedBoundaryMethod

+apply boundary conditions()

0..\*1



## Verification of GFM



Schlieren plot of density

3 additional refinement levels

Lift-up of a solid body in 2D and 3D when being hit by Mach 3 shock wave, Falcovitz et al. (1997) Overlay of two simulation of a Mach reflection on 800x400 grids with GFM (shown rotated) and 2<sup>nd</sup> order accurate scheme (initial conditions rotated)



#### Extension to 3D, color plot of density

•640h CPU on Pentium-4 2.2GHz

•AMR base grid 150x30x30, 3 additional levels all with factor 2



### GFM verification: shock interaction at double-wedge geometry

18 Oct 2005 | 1 = 0.0018125

WENO: Temp

- Simulation by D. Hill
- Mach 9 flow in air hitting a double-wedge (15° and 45°)
- Example from Olejniczak, Wright and Candler (JFM 1997)
- AMR base mesh 300x100, 3 additional levels with factor 2
- 3<sup>rd</sup> order WENO computation vs. 2<sup>nd</sup> order MUSCL with van Leer flux vector splitting









### GFM verification: shock interaction at double-wedge geometry



# Parallelization strategy

1 10

Domain decomposition:  $G_0 = \bigcup_{p=1}^P G_0^p$  with  $G_0^p \cap G_0^q = \emptyset$  for  $p \neq q$ 

$$G_0^p := \bigcup_{m=1}^{M_0} G_{0,m}^p \longrightarrow G_l^p := G_l \cap G_0^p$$

Workload:  $\mathcal{W}(\Omega) = \sum_{l=0}^{l_{\max}} \left[ \mathcal{N}_l(G_l \cap \Omega) \prod_{\kappa=0}^l r_{\kappa} \right]$ ,  $\mathcal{N}_l(G)$  No. of cells on l

Load-balacing: 
$$\mathcal{L}^p := \frac{P \cdot \mathcal{W}(G_0^p)}{\mathcal{W}(G_0)} \approx 1$$
 for all  $p = 1, \dots, P$ 



Processor 2

Processor 1

- Data of all levels resides on same node  $\rightarrow$  Interpolation and averaging remain strictly local
- Only parallel operations to be considered:
  - Parallel synchronization as part of ghost cell setting
  - Load-balanced repartitioning of data blocks as part of Regrid(1)
  - Application of flux correction terms on coarse-grid cells
- Partitioning at root level with generalized Hilbert space-filling curve by M. Parashar





## Parallelization strategy

DB: trace8\_\_0.vtk

х





user: randolf Tue Sep 13 15:37:23 2005



# Fluid-structure coupling

- Couple compressible Euler equations to Lagrangian structure mechanics
- Compatibility conditions between <u>inviscid</u> fluid and solid at a slip interface
  - Continuity of normal velocity:  $u^{S}_{n} = u^{F}_{n}$
  - Continuity of normal stresses:  $\sigma^{S}_{nn} = -p^{F}$
  - No shear stresses:  $\sigma_{n\tau}^{S} = \sigma_{n\omega}^{S} = 0$



- Fluid:
  - Treat evolving solid surface with moving wall boundary conditions in fluid
  - Use solid surface mesh to calculate fluid level set
  - Use nearest velocity values  $\mathbf{u}^{S}$  on surface facets to impose  $u_{n}^{F}$  in fluid
- Solid:
  - Use interpolated hydro-pressure  $p^{F}$  to prescribe  $\sigma^{S}_{nn}$  on boundary facets
- Ad-hoc separation in dedicated fluid and solid processors







# Algorithmic approach for coupling







### Implicit representations of complex surfaces

- **FEM Solid Solver** 
  - Explicit representation of the solid boundary, b-rep
  - Triangular faceted surface.

- **Cartesian FV Solver** 
  - Implicit level set representation.
  - need closest point on the surface at each grid point..





Closest point transform algorithm (CPT) by S. Mauch



# **CPT** in linear time

- Problem reduction by evaluation only within specified max. distance
- The characteristic / scan conversion algorithm.
  - For each face/edge/vertex.
    - Scan convert the polyhedron.
    - Find distance, closest point to that primitive for the scan converted points.
- Computational complexity.
  - O(m) to build the b-rep and the polyhedra.
  - O(n) to scan convert the polyhedra and compute the distance, etc.









Face Polyhedra

#### Edge Polyhedra

Vertex Polyhedra



# Incorporation into hierarchical SAMR

- Eulerian SAMR + non-adaptive Lagrangian FEM scheme
- Exploit SAMR time step refinement for effective coupling to solid solver
  - Lagrangian simulation is called only at level  $I_c < I_{max}$
  - SAMR refines solid boundary at least at level  $I_c$
  - One additional level reserved to resolve ambiguities in GFM (e.g. thin structures)
- Nevertheless: Inserting sub-steps accommodates for time step reduction from the solid solver <u>within</u> an SAMR cycle
- Communication strategy
  - Updated boundary info from solid solver must be received (blue arrow) before regridding operation (gray dots and arrows)
  - Boundary data is sent to solid (red arrow) when highest level available
- Inter-solver communication (point-to-point or globally) managed on the fly by current SAMR partition bounding box information by Eulerian-Lagragian-Coupling module (ELC)



- When SAMR mesh partitioning is done at runtime, the entire solid mesh must have been received (SAMR partitions must be allowed to change arbitrary)
- During strictly local regridding operations only the local portion of the solid mesh has to be received





# **ELC** communication module

1. Put bounding boxes around each solid processor's piece of the boundary and around each fluid processor's grid.







3. **Optimal point-to-point** communication pattern, non-blocking



2.





### Amroc coupled to CSD solver (the VTF)



### Amroc coupled to CSD solver (the VTF)



# Solid mechanics: adlib

- Parallel explicit dynamics
- Fully scalable communications
- Solid modeling
- Fully scalable unstructured parallel meshing
- Thermomechanical coupling and multiphysics models
  - Extensive constitutive library
    - single and polycrystal plasticity
    - ab initio EOS
    - shock physics, artificial viscocity
- Contact
- Fracture and fragmentation
- Coupling to other solvers





## Explosively loaded steel plates

• Perfect clamping of the plate, constant C4 charge (150 g) at different stand-off distances r. Numerical simulations

**Experimental tests** (K. Dharmasena, H. Wadley, University of Virginia)



(L. Noels, R. Radovitzky, MIT)



| TNT   | L     | t    | <i>r</i> [m] | d    | <i>T</i> <sub>i</sub> [K] | <b>p</b> i | $\rho_{\rm i}$     |
|-------|-------|------|--------------|------|---------------------------|------------|--------------------|
| [kg]  | [mm]  | [mm] |              | [m]  |                           | [GPa]      | [kg/m <sup>3</sup> |
| 0.192 | 406.4 | 1.9  | 0.15         | 0.04 | 5860                      | 10.4       | 62120              |
| 0.192 | 406.4 | 1.9  | 0.075        | 0.03 | 5860                      | 24.7       | 14750              |



### Explosively loaded steel plates - Validation

• Numerical simulations (5 nodes 2.2 GHz AMD Opteron quad processor; 480 h CPU):

#### **Deformed profiles**









# Solid mechanics: sfc

- Subdivision shell finite elements
  - Stretching and bending resistance
  - Large deformations
- Parallel explicit shell dynamics
  - Fully scalable communications
- Geometric modeling capabilities
- Access to a number of constitutive models
  - Adlib models as well as own implementations
- Parallel contact
- Fracture and fragmentation





### Validation example: detonation-driven fracture

- Experiments by T. Chao, J. C. Krok, J. Karnesky, F. Pintgen, J.E. Shepherd (GalCIT)
- Motivation: Validate VTF for complex fluidstructure interaction problem
- Interaction of detonation, ductile deformation, fracture
- Modeling of ethylene-oxygen detonation with constant volume burn detonation model



### Treatment of shells/thin structures

- Thin boundary structures or lower-dimensional shells require "thickening" to apply ghost fluid method
  - Unsigned distance level set function  $\varphi$
  - Treat cells with  $0 < \varphi < d$  as ghost fluid cells (indicated by green dots)
  - Leaving  $\varphi$  unmodified ensures correctness of  $\nabla \varphi$
  - Refinement criterion based on  $\varphi$  ensures reliable mesh adaptation
  - Use face normal in shell element to evaluate in



 $\Delta p = p_u - p_l$ 



### Elastic-plastic validation – Tube with flaps

#### Fluid

- Constant volume burn model with  $\gamma$ =1.24,  $P_{CJ}$ =3.3 MPa,  $D_{CJ}$ =2376 m/s
- AMR base level: 104x80x242, 3 additional levels, factors 2,2,4
- Approx. 4 10<sup>7</sup> cells instead of 7.9 10<sup>9</sup> cells (uniform)
- Tube and detonation fully refined
- Thickening of 2d mesh: 0.81mm on both sides (real thickness on both sides 0.445mm)
- 16 nodes 2.2 GHz AMD Opteron guad processor, PCI-X 4x Infiniband network

Solid – Thin-shell solver by F. Cirak

- Aluminum, J2 plasticity with hardening, rate sensitivity, and thermal softening
- Mesh: 8577 nodes, 17056 elements
- 16+2 nodes 2.2 GHz AMD Opteron guad processor, PCI-X 4x Infiniband network
- Ca. 4320h CPU to t=450 µs













32 µs



30 µs









### Elastic-plastic validation – Tube with flaps

#### Fluid

- Constant volume burn model with  $\gamma$ =1.24,  $P_{CJ}$ =3.3 MPa,  $D_{CJ}$ =2376 m/s
- AMR base level: 104x80x242, 3 additional levels, factors 2,2,4
- Approx. 4 10<sup>7</sup> cells instead of 7.9 10<sup>9</sup> cells (uniform)
- Tube and detonation fully refined
- Thickening of 2d mesh: 0.81mm on both sides (real thickness on both sides 0.445mm)
- 16 nodes 2.2 GHz AMD Opteron quad processor, PCI-X 4x Infiniband network

Solid – Thin-shell solver by F. Cirak

- Aluminum, J2 plasticity with hardening, rate sensitivity, and thermal softening
- Mesh: 8577 nodes, 17056 elements
- 16+2 nodes 2.2 GHz AMD Opteron quad processor, PCI-X 4x Infiniband network
- Ca. 4320h CPU to *t*=450 μs















30







60 μs

5

92 μs

90 μs

### Elastic-plastic validation – Tube with flaps

#### Fluid

- Constant volume burn model with  $\gamma$ =1.24,  $P_{CJ}$ =3.3 MPa,  $D_{CJ}$ =2376 m/s
- AMR base level: 104x80x242, 3 additional levels, factors 2,2,4
- Approx. 4 10<sup>7</sup> cells instead of 7.9 10<sup>9</sup> cells (uniform)
- Tube and detonation fully refined
- Thickening of 2d mesh: 0.81mm on both sides (real thickness on both sides 0.445mm)
- 16 nodes 2.2 GHz AMD Opteron quad processor, PCI-X 4x Infiniband network

Solid – Thin-shell solver by F. Cirak

- Aluminum, J2 plasticity with hardening, rate sensitivity, and thermal softening
- Mesh: 8577 nodes, 17056 elements
- 16+2 nodes 2.2 GHz AMD Opteron quad processor, PCI-X 4x Infiniband network
- Ca. 4320h CPU to *t*=450 μs















31





150 μs

212 µs

210 µs

## **Tube with flaps - Results**





Fluid density and diplacement in y-direction in solid Schlieren plot of fluid density on refinement levels



ASC

## **Tube with flaps - Results**





#### Fluid density and diplacement in y-direction in solid

Schlieren plot of fluid density on refinement levels





# **Coupled simulations with fracture**

- Coupled simulation with one-step detonation model
- J2-plasticity model and cohesive elements to model fracture
- Solid mesh: ~ 10,000 elements
- ~ 2000h CPU on 64 processors Compaq QSC





### Deformation of plates by a water hammer

- Experimental results provided by V.S. Deshpande, University Cambridge.
- Strong pressure wave in water created by piston.
- Wave impinges onto a thin copper plate
- Depending on the initial projectile velocity the pressure induces plastic deformation of different rupture patterns.
- Fluid
  - Pressure wave generated by solving equation of motion for piston during entire fluid-structure simulation.
  - Modeling of water with stiffened gas equation of state with
  - AMR base level: 350x20x20, 2 additional levels, refinement factor 2,2.
  - Approx. 1,2M cells used in fluid on average instead of 9M (uniform)
- Solid
  - SFC solver
  - Copper plate of 0.25mm, J2 plasticity model with hardening, rate sensitivity, and thermal softening
  - Solid mesh: 4675 nodes, 8896 elements









## **Plastic deformation**





- *р*<sub>0</sub>=34 МРа
- 8 nodes 3.4 GHz Intel Xeon dual processor, Gigabit ethernet network, ca. 130h CPU



### **Plastic deformation**





- $p_0 = 34 MPa$
- 8 nodes 3.4 GHz Intel Xeon dual processor, Gigabit ethernet network, ca. 130h CPU



### **Plastic deformation**





- $p_0 = 34 MPa$ 
  - 8 nodes 3.4 GHz Intel Xeon dual processor, Gigabit ethernet network, ca. 130h CPU



### **Plate fracture**



- Two-component solver with stiffened gas EOS for water and ideal gas EOS for air
- INDOILING OF ICHNOLOGI
- Material model for cohesive interface: linear decreasing envelope, cohesive stress  $\sigma_c$ =525 MPa
- 4+4 nodes 3.4 GHz Intel Xeon dual processor, ca. 550h CPU



### FSI example: shock-induced panel motion

- Elastic motion of a thin steel plate (thickness h=1mm, length 50mm) hit by a Mach 1.21 shock wave in air, Giordano et al. Shock Waves (2005)
- Steel plate modeled with finite difference solver using the beam equation

$$\rho h \frac{\partial^2 w}{\partial t^2} + EI \frac{\partial^4 w}{\partial x^4} = p(x, t)$$

- Forward facing step geometry, reflective boundaries everywhere except inflow at left side, panel 1.5cm behind start of step
- SAMR base mesh 320x64, 2 additional level with factors 2, 4
- 54h CPU on 4 nodes with Intel 3.4GHz Xeon dual processors connected with Gigabit Ethernet





## Shock-induced panel motion





Schlieren plot of density enlarged to show panel motion



# vtf/fsi/beam-solver/VibratingBeam

#### vtf/fsi/beam-amroc/VibratingBeam

- solver.in
- <u>display\_file.in</u>
- <u>run.py</u>

#### vtf/fsi/beam-amroc/VibratingBeam/src

- FluidProblem.h
- SolidProblem.h
- Makefile.am

