
Impulse Generation by an Open

Shock Tube

J. Kasahara∗

University of Tsukuba, Tsukuba 305-8573, Japan

Z. Liang†, S.T. Browne‡, and J.E. Shepherd§

Aeronautics, California Institute of Technology, Pasadena, CA 91125

Submitted August 23, 2006

Abstract

We performed experimental and numerical studies of a shock tube with an open end.

The purpose was to investigate the impulse due to the exhaust of gases through the open

end of the tube as a model for a partially-filled detonation tube as used in pulse detonation

engine testing. We have studied the effects of the pressure ratio (varied between 3 to 9.4) and

volume ratio (expressed as fill fraction) between the driver and driven section. Two different

driver gases, helium and nitrogen, and fill fractions between 5 and 100% were studied; the

driven section was filled with air. For both driver gases, increasing the pressure ratio led

to larger specific impulses. The specific impulse increased for decreasing fill fraction for the

helium driver but the impulse was almost independent of fill fraction for the nitrogen driver.

Two-dimensional (axi-symmetric) numerical simulations were carried out for both driver

gases. The simulation results show reasonable agreement with experimental measurements

at high pressure ratios or small fill fractions but there are substantial discrepancies for the

smallest pressure ratios studied. Empirical models for the impulse in the limits of large and

small fill fractions are also compared to the data. Reasonable agreement is found for the

trends with fill fraction using the Gurney or Sato et al. model and the bubble model of

Cooper is able to predict the small fill fraction limit in both cases.
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Introduction

Motivated by recent interest in pulse detonation engines,1 the impulse from a partially-

filled detonation tube has been studied by a number of researchers.2–11 In these experiments

and analysis, a portion of the detonation tube near the closed end (thrust surface) contains

the combustible mixture while the remaining portion of the tube up to the open end contains

an inert gas mixture, .e.g., air. The general conclusions of these studies is that an inert section

will increase the specific impulse (impulse per unit mass of combustible mixture) although the

total impulse decreases. Based on these studies, the use of partially-filled detonation tubes

has been proposed as a technique for improving specific performance. A number of simple

models have been proposed to account for the partial-fill effect but there is no consensus

regarding the best way to model this effect and correlate performance. It is hard to make

detailed comparisons between experiments and models because it is difficult to generate an

ideal detonation in a small length tube, and non-ideal processes such as heat transfer losses

may be significant.12,13

For these reasons, we are motivated to examine the simpler case of a shock tube with an

open end. Experimentally, we can more readily vary parameters including the fill fraction

and the initial pressure ratio than is possible in detonation experiments. Numerically, the

non-reacting gas dynamics of the shock tube can be accurately simulated using the perfect

gas models for the driver and driven section. We can examine the limiting value of impulse

as the fill fraction approaches zero and compare the results with models proposed for this

case. Cooper6 predicted that the impulse will approach a limiting value on the basis of a

simple model, but it is experimentally difficult to approach this limit in the detonation case.

Other approximate models5,8, 11,12 have also been proposed to predict impulse dependence

on the fill fraction when the fill fraction is close to one. We have examined both limits

experimentally, carried out detailed numerical simulations, and compared the results to the

approximate analytical models.

Experiments

As shown in Figure 1, the experimental apparatus was a partially-filled shock tube. This

conventional shock tube consisted of a cylindrical driver of fixed length (100.7 mm) to which

cylindrical extensions (the driven section) of various lengths (12.7-1814 mm) were added.

The driver section was filled with pressurized gas (helium or nitrogen) and initially sealed by

a thin polyethylene-terephthalate plastic diaphragm separating the driver and driven section.

The driven section was open to the atmosphere. The initial conditions in the driven section

matched those of the room, nominally 22◦C and Pa = 99 kPa. In the driver section, the

initial temperature was also room temperature , but the initial pressure was varied from P0
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= 929 kPa (P0/Pa = 9.38) to P0 = 198 kPa (P0/Pa = 2.0).

To start the experiment, the diaphragm was ruptured using a pneumatically-activated

cutter. The pressurized driver gas expanded into the driven section, creating a shock in

the driven section which propagated to the open end of the driven section and diffracted

into the surrounding atmosphere. This resulting wave system is similar to that observed

in detonation tube experiments and models.12,14 An expansion wave (E1), centered at the

initial location of the diaphragm, propagated toward the thrust surface, the closed end wall

of the driver section. This process is illustrated in Fig. 2. Initially, the pressure on the closed

end surface was equal to the initial pressure of the driver, P0 and remained constant in

the interval t0-t1. During the initial reflection of the expansion wave the pressure decreased

during the time interval t1-t2 and remained constant again during the interval t2-t3. After

sufficient time for reverberation, the pressure inside the tube reached the ambient value Pa.

As shown in Figure 3, the impulse was measured mechanically using the ballistic pendulum

technique15 and the pressure history on the closed end was measured with a piezoelectric

pressure transducer (PCB 113A). The partially-filled shock tube was suspended by four

stainless wires from the ceiling of the experimental room. The effective wire length of the

pendulum L was 1987 mm. The maximum displacement of the shock tube in the horizontal

direction xm was measured by using CCD camera. When L >> xm, the impulse I was easily

obtained by Eqn. 1

I = Mxm

√
g

L
, (1)

where M is the mass of the partially-filled shock tube, and g is gravitational acceleration.

The specific impulse was obtained by Eqn. 2

Isp =
I

m0g
=

Mxm

ρ0V0

√
1

gL
, (2)

where m0, ρ0 and V0 are the mass, initial density, and initial volume of the driver gas (helium

or nitrogen) respectively.

Numerical Model

The computational domain is shown in Fig. 4. Since the geometry is symmetric, only half

of the domain was computed. The tube diameter, d = 39.5 mm, and driver section length,

L0 = 101.6 mm, are constant. The driven section varies between 0 m and 1.8339 m. The

fill fraction, α, is defined as α = L0/L, where L is the total shock tube length. The total

computational domain size is 3L (length) by 4d (width). An outflow boundary condition is

implemented on the top, left (except the the closed end of the shock tube), and right sides.
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The bottom side is the symmetry boundary. The corresponding gas parameters are listed in

Table 1.

The problem is modeled using the two-dimensional (planar), inviscid, non-reactive Euler

equations with the perfect gas equation of state. Two constant polytropic exponents, γ1 and

γ2, representing gases in both driver and driven sections are used. Each gaseous species is

assumed to be a thermally perfect gas, so the specific heat at constant pressure

cpi
= cpi

(T ) (3)

is function of temperature only, where i = 1, 2. For a perfect gas,

cpi
=

γiR

γi − 1
. (4)

The specific heat for the mixture is then given by

cp(Yi, T ) =
∑
i=1,2

Yicpi
(T ) (5)

where Yi is the mass fraction of gases. The details of the implementation of the mixture

model are given in Deiterding.16

The equations are solved with an explicit second order Godunov-type numerical scheme

incorporating a hybrid Roe-solver-based method. A block-structured adaptive mesh refine-

ment technique is utilized to supply the required resolution locally.17 This adaptive method

uses a hierarchy of spatially-refined subgrids which are integrated recursively with reduced

time steps.

In the numerical simulations, the impulse was computed by first finding the spatial av-

erage of the pressure on the closed end to determine the net force on the tube as a function

of time. The force was then numerically integrated in time to find the total impulse.

I =

∫
Fdt =

∫ tfinal

0

(P (t)− Pa)A0dt (6)

where P (t) is the average pressure on the thrust surface, Pa is the ambient pressure, A0

is the cross-sectional area of the driver section, and tfinal is the final time reached in the

simulation. The simulation was carried out until P (t) was reasonably close to Pa. The

trapezoidal rule was used to perform the integration and in the current computations, tfinal

= 4 ms for helium and tfinal = 8 ms for nitrogen.
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The specific impulse based on the total driver mixture mass is defined as

Isp =
I

ρ0V0g
=

∫ tfinal

0

(P (t)− Pa)

ρ0L0g
dt (7)

where ρ0 and L0 are the gas density and the tube length of the driver section respectively.

Approximate Models

A number of approximate models have been proposed for correlating impulse with the

fill fraction and the thermodynamic properties of the mixture. We have examined three of

these in the present study: the Gurney model, based on energy conservation, a “bubble”

model based on acoustic analysis, and an empirical model by Sato et al.11 The Gurney and

Sato models are useful for large fill fractions while the “bubble” model is designed to deal

with the limiting case of a very small fill fraction.

Gurney model

The Gurney model was originally developed to predict the acceleration of metal by

detonation of explosives.18,19 The model is based on energy conservation and a simple

approximation of the velocity in the detonation products. The Gurney model for explo-

sives suggests a simple approach for predicting the value of the impulse for pulse detonation

tubes5,6 and can be extended to the present case by analogy. The results of the Gurney

model can be expressed in terms of the mass M of the shock tube, mass C of the pressurized

driver gas, and mass N of the air in the driven section, which is referred to as the “tamping”

mass in the case of explosives. The impulse predicted5 by the Gurney model is

I = M
√

2e

(√
1 + A3

3(1 + A)
+ A2

N

C
+

M

C

)−1

(8)

where

A =
1 + 2M

C

1 + 2N
C

(9)

and e is the Gurney energy of the explosive, in this case, the pressurized driver gas. The

Gurney energy is taken to be a percentage of the ideal amount of specific energy available

to do mechanical work

e = ηei (10)

5 of 33



η is the energy efficiency and is determined empirically (see Section ). Assuming isentropic

expansion of the pressurized gas,

ei =
P0

(γ − 1)ρ0

[
1−

(
P0

Pa

)1/γ−1
]

(11)

Typically, M/C →∞, and we can rewrite Eq. 8 in term of the specific impulse

Isp(α) =
I

Cg
=

√
2e

g

N
C

+ 1
2√

N
C

+ 1
3

(12)

The mass of the pressurized gas C and the mass of the air N can be related to the partial

fill fraction α

α =

C
ρ0

C
ρ0

+ N
ρa

=
1

1 + ρ0

ρa

N
C

(13)

where ρa is the density of the air. Therefore for a given gas in the driver section, the specific

impulse depends on the fill fraction α and the Gurney energy e.

For a fully-filled tube, i.e. without any tamping gas (N = 0), α = 1.0, and the specific

impulse Isp(α = 1) is

Isp(α = 1) =

√
1.5e

g
(14)

Then the ratio of Isp/Isp(α = 1) is

Isp

Isp(α = 1)
=

√
4

3

N
C

+ 1
2√

N
C

+ 1
3

, (15)

which only depends on the ratio of N/C or the fill fraction α.

Table 2 shows the specific impulse Isp(α = 1) computed with Eq. 12. For explosives,

the Gurney energy is some fraction of the heat of combustion of the explosive and we ex-

pect in the present case that it will be some fixed fraction η of the ideal energy given by

Eq. 11. For detonation tubes, a value of η = 0.3 was determined.5,6 For the present case,

we have determined the efficiency in Section by fitting the Gurney model results to either

the experimental data or computation results.

Bubble model

The expanding “bubble” model of detonation hot products6 predicts the specific impulse

in the limit of α → 0. Here we use the same idea to analyze the shock tube. If the pressurized

driver gas expands isentropically and is spatially uniform, the change in pressure, P (t), can
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be related to the length of the driver as a function of time

P (t) = P0

(
L0

x(t)

)γ0

(16)

where x(t) is the location of the contact surface that separates the driver and driven gas in

an ideal one-dimensional shock tube model. The idea behind the bubble model is that the

contact surface velocity induces a flow and pressure rise in the driver gas which, for small

velocities, can be computed using the method of characteristics or in a linearized version,

acoustic theory. This yields6 an ordinary differential equation for contact surface velocity

dx

dt
=

2c0

γa − 1

(
x

L0

) γ0
2γa

(1−γa)(
P0

Pa

) 1
2γa

(γa−1)−1

(17)

where γ0 and γa represent the specific heat ratio of the driver gas and the air. Equation 17

can be numerically integrated until the contact surface reaches the final position. Time

integration of the pressure history at the closed end yields the predicted impulse. Figure 5a

shows an x-t diagram of the contact surface trajectories for several cases. The pressure

histories for several pressure ratios are plotted in Fig. 5b. The pressure decays faster for

higher initial pressure ratios and larger specific heat ratios, γ, in the driver gas.

Table 3 lists the specific impulse in the limit of α → 0 or L →∞, Isp(α → 0), computed

with Eq. 17 for each case.

Sato model

Sato et al.11 proposed a simple empirical formula for predicting Isp/Isp(α = 1),

Isp/Isp(α = 1) =
1√
Z

(18)

where Z is related to the fill fraction α by

Z =
αρ0

αρ0 + (1− α)ρa

, (19)

Z can also be related to the mass ratio of N/C by substituting Eq. 13 to Eq. 19,

Z =
1

1 + N/C
. (20)

Now Eq. 18 becomes

Isp

Isp(α = 1)
=

√
1 +

N

C
(21)
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Comparison with the Gurney model and simulation results will be discussed in the fol-

lowing Section.

Simulation and Experimental Results

Pressure and impulse history

Figure 6 shows simulation results of the average pressure time histories on the thrust

surface and the specific impulse for two fill fractions with helium as the driver gas. Since

the length of the driver is fixed, the time, t1 (Fig. 2), when the head of the expansion fan

(E1) radiating from the location of the diaphragm reaches the thrust surface only varies

with driver gas. This is because the speed of the expansion fan is determined by the sound

speed in the driver gas. The sound speed in helium is 1008 m/s, so t1 is ≈ 0.1 ms. For

the maximum fill fraction, α = 1.0 (Figure 6a), the pressure on the thrust surface, P (t),

decays below the ambient pressure Pa between 0.1 − 0.12 ms depending on the pressure

ratio. Then it begins to oscillate, but all oscillations are damped out by 4 ms for all pressure

ratios. In each case, the specific impulse reaches its maximum value when P (t) = Pa and

then decreases to its minimum value due to the negative impulse generated when P (t) < Pa.

The final average Isp is close to the maximum Isp for higher pressure ratios, but in the case

P0/Pa = 3, it is almost 30% lower than its maximum. The same feature in the pressure

signals was observed in the experiments, shown in Fig. 7. In the experiments, the time zero

corresponds to when the data acquisition system was triggered and the negative time period

represents the pre-trigger signals.

In the computations, before P (t) decays below Pa in the lower fill fraction case, α = 0.6

(Figure 6b), there exists a second plateau. In this case, the expansion wave (E3), which is

radiating toward the thrust surface from the interaction of the reflected expansion fan (E2)

and the contact surface, must travel farther as the length of the driven section is longer.

In the lower fill fraction case, E3 reaches the thrust surface later than in the α = 1.0 case.

Hence the total impulse is larger than the α = 1.0 case at the same pressure ratio. The

pressure oscillations are also damped more quickly than in the α = 1.0 case.

The pressure and specific impulse histories for nitrogen are shown in Fig. 8. Since the

sound speed in nitrogen (350 m/s) is lower than in helium, t1 occurs relatively later, 0.29 ms.

The second-constant-pressure stage does not appear for all fill fractions and pressure ratios,

because the pressure oscillates for a much longer time period (tfinal > 8 ms). The oscillation

period is shorter for larger fill fraction, i.e. tfinal = 1.8 ms for α = 0.8 and tfinal = 3 ms for

α = 0.2. The fill fraction has a stronger effect on the final average specific impulse than does

the initial pressure ratio. For example, when α = 1.0, the final average Isp is slightly below

its maximum value for all three pressure ratios, but for α = 0.2, it varies widely (8 − 22 s
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for P0/Pa = 3) mainly due to the long oscillation period. For this reason, longer integration

time periods are necessary for nitrogen mixtures at low fill fractions.

Specific impulse

The specific impulse computed from numerical simulations, analytical models, and ex-

perimental measurements are compared in Figures 9-12.

Effect of fill fraction

For helium, the general trend is that the Isp increases as α decreases until α < 0.2 where

the Isp reaches a maximum value. For nitrogen, the Isp remains almost constant as α varies.

For both gases, the Isp increases as the pressure ratio increases for a fixed α. In Figures 9-11

and 12, two Gurney model estimates are computed with different energy efficiencies.

For P0/Pa = 9.38 (Fig. 9) and P0/Pa = 6.0 (Fig. 10), when α < 0.2, results from

the bubble model show close agreement with experiments and simulations for helium, but

slightly underpredict for nitrogen. When 0.2 < α < 0.8, solutions from the Gurney model

also match well with both experiments and simulations. When α > 0.8, simulation results are

systematically higher than experimental data (25%). For P0/Pa = 3.0 (Fig. 11), simulation

results are quite different from the experiments when 0.4 < α < 0.8. We believe that this

is due to two factors. First, in the experiment, the method with which the diaphragm

was broken may have caused finite delay time of its rupture which affects the measurements.

Experimental pressure profiles at the thrust wall for different initial pressure ratios are shown

in Fig. 7. For a low pressure ratio, p1/pa = 3.134, the decay time at the wall becomes longer

than in Fig. 6a. When the pressure ratio becomes lower, the diaphragm ruptures slower.

If the extension tube becomes longer (α decreases), the time ratio of diaphragm rupture to

pressure wave propagation in the tube becomes smaller. Therefore, in a high initial pressure

ratio or in a low fill fraction, the experiments have good agreement with the simulations.

Additionally, in the simulations, the model neglects friction and heat transfer and assumes

constant specific heats.

Effect of initial pressure

The effect of the initial pressure ratio on the Isp at a fixed fill fraction, α = 0.89, is

examined in Figure 12. The general trend is that the Isp is larger at higher initial pressure

ratios. A constant energy efficiency, η = 0.30, was used for the Gurney model solution. It

shows close agreement with simulation results when P0/Pa > 4, but overpredicts at lower

pressure ratios due to the decrease in the energy efficiency at smaller pressure ratio. The

simulation results are systematically higher than the experimental data. For helium, the

computation results are larger than the experimental measurements by a factor of 1.5− 1.7
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when 2.0 < P0/Pa < 8.0. For nitrogen, the discrepancy is large at small pressure ratio, i.e.

a factor of ≈ 2.0 at P0/Pa = 2.0, but smaller at high pressure ratio, i.e. a factor of ≈ 1.2 at

P0/Pa = 9.38. As shown in Fig. 11, the difference between experiments and simulations is

large at α = 0.8. We expect the agreement will be better at low fill fractions.

Model comparison

The ratios of Isp/Isp(α = 1) computed from the Gurney model, the Sato’s model, and

simulation results are shown in Fig. 13. Both models reasonably predict the Isp when 0.2 <

α < 1.0 at three pressure ratios. The Gurney model prediction is larger than the Sato’s

model prediction at all fill fractions and initial pressure ratios. The simulation results are

smaller than both model predictions. Simulation results also show that the maximum ratio

of Isp/Isp(α = 1) at α < 0.2 is larger for lower pressure ratios, i.e. Isp/Isp(α = 1) ≈ 2.7 for

P0/Pa = 3, ≈ 1.8 for P0/Pa = 6, and ≈ 1.5 for P0/Pa = 9.38.

Energy efficiency

The ideal energy computed in section represents the maximum stored chemical energy

in the pressurized gas. In reality, an energy efficiency η must be considered to represent the

fraction of the stored chemical energy converted into mechanical work.5 computed energy

efficiency values based on predicted specific impulse values for several mixtures at initial

conditions of 100 kPa and 300 K. Their work shows that efficiency values range between

0.124 and 0.305 for gaseous fuel-oxygen-nitrogen mixtures, which are slightly less than typical

propellant efficiency values of 0.2− 0.3 and significantly less than typical efficiency values of

0.6− 0.7 for high explosives.

In the current study, the energy efficiency was computed by matching the Gurney model

solutions with either the experimental measurements or simulations with least-square-fit

criteria. Table 4 and Fig. 14 show the change in η at different pressure ratios for both

helium and nitrogen. η is smaller at lower pressure ratios and larger for computations than

experiments at all pressure ratios.

Conclusions

We used a shock tube with an open end to study the analog of the partial-fill effect ob-

served in detonation tubes. We have carried out experiments and two-dimensional numerical

simulations with a range of shock tube parameters. The specific impulse was measured and

computed for two gases, helium and nitrogen, in the driver section and air in the driven

section. The initial pressure ratio ranged from P0/Pa = 2.0-9.38, and the fill fraction was

varied from α = 0.05-1.0. For both helium and nitrogen drivers, increasing the pressure

ratio with a fixed fill fraction caused the specific impulse to increase. When the fill fraction
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decreased, for helium, the specific impulse increased, and reached a maximum value when

α < 0.2, but the effect for nitrogen was negligibly small.

We also compared specific impulse results from numerical simulations, experimental mea-

surements, and analytical models. The numerical simulation results matched reasonably well

with experimental measurements for high pressure ratios (P0/Pa > 6) over a large range of

fill fractions (α = 0.05−0.8), but a systematic difference existed when α > 0.8 for all pressure

ratios. We believe that these differences are associated with diaphragm opening time and

curvature in the experiments, and neglecting heat transfer and friction in the simulations.

When the fill fraction is small (α < 0.2), the analytical “bubble” model predicts a

maximum specific impulse. The estimated value showed good agreement with both numerical

computations and experiments for helium at three pressure ratios, 3.0, 6.0 and 9.38. The

bubble model slightly under-predicted the impulse for nitrogen at high pressure ratios. When

the fill fraction was sufficiently (α > 0.2), the Gurney model predicts the correct trends but

the effective energy is much lower than the ideal value and varies with the pressure ratios.

Therefore, energy efficiencies must be determined empirically. The computed efficiencies

range between 5% and 25% depending on the driver gas and fill fraction. By matching the

specific impulse computed from the Gurney model with experimental data, we found the

energy efficiency is much lower at smaller pressure ratios (P0/Pa = 3: η = 5.6% for helium,

η = 7.3% for nitrogen) than at larger pressure ratios (P0/Pa = 9.38: η = 17.8% for helium,

η = 24.5% for nitrogen). The Sato model and Gurney model yield very similar results and

comparable level of agreement with the experiments or numerical simulations.

The dramatic differences between using nitrogen and helium for the driver shows that

the partial-fill effect (increase in specific impulse with decreasing fill fraction) is primarily

associated with wave processes and is not just due to inertia alone. The differences in density

and sound speed between helium and air results in a sharp acoustic impedance discontinuity

at the contract surface between the driver and driven section, this traps acoustic waves within

the driver and results in the large increase in specific impulse observed in the helium cases.

No such trapping occurs in the case of nitrogen and for this reason, the partial fill effect is not

observed in this case. The acoustic analysis of the ”bubble model” captures the difference

between helium and nitrogen quantitatively at small fill fractions despite the nonlinear nature

of the actual experiments. As the fill fraction approaches one and results in the decrease in

specific impulse with increasing fill fraction. This is in agreement with the Gurney model

for helium but not for nitrogen drivers. The disagreement of the Gurney, Sato, and other

empirical models with the nitrogen cases indicates that energy conservation methods and

mass ratios are insufficient to explain the partial-fill effect although these models show the

correct trends for helium case. As the results for nitrogen show, the apparent agreement
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is fortuitous and gas dynamic effects associated with the difference in sound speed between

driver and driven section must be included in order to explain the partial-fill effect.
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Table 1: Gas parameters.

Gas γ W (g/mol) ρ @ 1atm (kg/m3)
He 1.66 4.0 0.1787
N2 1.406 28.0 1.2506
Air 1.4 29.0 1.225
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Table 2: Specific impulse Isp(α = 1) computed from the Gurney model, assuming an
energy efficiency η = 30%.

Gas P0/Pa ei (MJ/kg) Isp(α = 1) (s)
3.0 0.509 48.83

He 6.0 0.965 67.25
9.38 1.333 79.04
3.0 0.081 19.42

N2 6.0 0.146 26.17
9.38 0.196 30.30
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Table 3: Specific impulse Isp(α → 0) computed with the bubble model.

Gas P0/Pa Isp(α → 0) (s)
3.0 105.04

He 6.0 124.97
9.38 128.57
3.0 18.79

N2 6.0 23.26
9.38 24.61
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Table 4: Energy efficiency η.

Gas P0/Pa simulations experiments
3.0 0.161 0.056

He 6.0 0.197 0.153
9.38 0.222 0.178
3.0 0.168 0.073

N2 6.0 0.229 0.229
9.38 0.256 0.245
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Figure 5: (a) x-t diagram illustrating contact surface trajectory (b) Pressure his-
tories illustrating pressure decay as a function of initial pressure ratio for the two
isentropic exponents corresponding to each gas.

24 of 33



t (ms)

P(
t)/

Pa

10-2 10-1 1000

1

2

3

4

5

6

7

8

9

10

P0/Pa=3
P0/Pa=6
P0/Pa=9.38
P/Pa=1

Is
p

(s
)

-20

0

20

40

60

80

t (ms)

P(
t)/

Pa

10-2 10-1 1000

1

2

3

4

5

6

7

8

9

10

P0/Pa=3.0
P0/Pa=6.0
P0/Pa=9.38
P/Pa=1.0

Is
p

(s
)

0

20

40

60

80

100

(a) (b)

Figure 6: Normalized pressure and specific impulse vs. time for (a) α = 1.0 and (b)
α = 0.6 in He/Air.
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Figure 8: Normalized pressure and specific impulse vs. time for (a) α = 0.8 and (b)
α = 0.2 in N2/Air.
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Figure 9: Specific impulse vs. α for (a) He/Air and (b) N2/Air. P0/Pa = 9.38 for
both simulations (sim.) and experiments (exp.). Gurney model energy efficiencies
were: η = 0.178 for He/Air and η = 0.245 for N2/Air.
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Figure 10: Specific impulse vs. α for (a) He/Air and (b) N2/Air. P0/Pa = 6.0 for
simulations (sim.) and P0/Pa = 6.2 for experiments (exp.). Gurney model energy
efficiencies were: η = 0.153 for He/Air and η = 0.229 for N2/Air.
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Figure 11: Specific impulse vs. α for (a) He/Air and (b) N2/Air. P0/Pa = 3.0 for
simulations (sim.) and P0/Pa = 3.1 for experiments (exp.). Gurney model energy
efficiencies were: η = 0.056 (blue) and η = 0.161 (pink) for He/Air and η = 0.073 (blue)
and η = 0.168 (pink) for N2/Air.
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Figure 12: Specific impulse vs. pressure ratio for α = 0.89 and (a) He/Air and (b)
N2/Air. The Gurney model energy efficiency was η = 30%.
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Figure 13: Specific impulse vs. fill fraction of He/Air for (a) P0/Pa = 9.38, (b)
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