
1 Construction of Boundary values

The interface between fluid F and solid S in the VTF application is modeled as
a contact discontinuity [2, 4]. The compatibility conditions are the continuity of
normal velocity and normal stress across the interface, while shear stresses have to
vanish in case of an inviscid fluid, i.e.

vS
n = vF

n ,
σS

n = −pF ,
σS

t = 0.
(1)

For a fluid-fluid coupling we have

vF1
n = vF2

n ,
pF1 = pF2 .

(2)

As the Eulerian fluid calculation uses ghost cells to set boundary conditions the
practial question arises, how such values have to be chosen to fulfill the latter condi-
tions in the discrete sense. Apparently, for the consistent matching of discrete values
their location on the computational mesh (the staggering) can’t be neglected and
we start with the precription of Dirichlet boundary conditions along the boundary
in a cell-centered discretization. This question is of course also relevant for moving
embedded boundaries.

1.1 Moving Wall Boundary Conditions for Euler Equations

At a moving wall the velocity component in the normal direction is required to be
the wall velocity w, i.e.

vn = w. (3)

The Galiean transformation v′n = vn − w = 0 leads to the usual wall boundary
condition

v′n = 0,

which we satisfy along the interface i+ 1
2

by choosing −v′n,i = −(vn,i−w) as normal
velocity in the ghost cell i + 1. Transforming this into the stationary frame of
reference gives 2w − vn,i in the ghost cell i + 1. Obviously, this choice is consistent
with the boundary condition (3) at the boundary i + 1

2
, cf. Fig. 1.

In primitive variables the values of ρ, V = (vn, vt), p have to be mirrored across
the interface. The ghost cell velocities are then calculated by evaluating the vector
expression

VF1
Gh = (2W · n−VF1

M · n)n + (VF1
M · t)t = 2

(
(W −VF1

M ) · n
)
n + VF1

M .
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Figure 1: Ghost cell setting for a moving wall boundary for Euler Equations.

Figure 2: Ghost cell setting in a ghost fluid method for fluid F1.
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1.2 Fluid-Fluid Coupling

Fluid solvers typically employ a cell-centered finite volume discretizations. A ghost
fluid method consistent with the compatability conditions (2) can easily be con-
structed just by extrapolating values from one side and replacing pressure and nor-
mal velocity in the ghost cells cell-center by cell-center [3]. See Fig. 2 for the setting
of the ghost cells in fluid F1 right of the interface i + 1

2
. If both fluid solvers use the

same averaging at cell interfaces, e.g. the Roe-averaging

û =

√
ρlul +

√
ρrur√

ρl +
√

ρr

,

they satisfy the same discrete compatibility conditions, because both solvers would
use v̂n,i+ 1

2
= 1

2
(vF1

n,i + vF2
n,i+1) and p̂i+ 1

2
= 1

2
(pF1

i + pF2
i+1) to evaluate the flux at the

interface.
In multiple space-dimensions an effective implementation would solve the Eikonal

equation
It + n · ∇ = 0

with boundary data from the cells near the interface to extrapolate ρi, vt,i, pi. The
velocity treatment in the ghost cells for F1 can also be expressed as

VF1
Gh = (VF2 · n)n + (VF1

Ext · t)t = (VF2 · n)n + VF1
Ext − (VF1

Ext · n)n.

1.3 Solid-Fluid Coupling

A solid solver typically uses a node-centered finite element discretization. If the finite
element mesh is conformal with the finite volume mesh, the values from the solid
computation are assigned to cell interfaces. If the boundary velocity in the normal
direction is presribed by the solid computation, but the pressure load on the finite
element nodes is taken from the finite volume mesh [2], the values in the ghost cells
next to the boundary are already fully prescribed, cf. Figs. 3 and 4. The discrete
coupling conditions at interface i + 1

2
, e.g. with Roe-averaging in the fluid solver,

are
vS

n,i+ 1
2

= v̂n,i+ 1
2

= 1
2
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n,i + 2vS
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− vF1
n,i),

pS
n,i+ 1

2

= p̂i+ 1
2

= 1
2
(pF1

n,i + pF1
n,i).

If the values in the remaining cells are set by constant value extrapolation, the
velocity treatment in the ghost cells could be expressed as

VF1
Gh = (2VS · n−VF1

Ext · n)n + (VF1
Ext · t)t = 2

(
(VS −VF1

Ext) · n
)
n + VF1

Ext.

If the ghost cell values are derived by mirroring across the interface, cf. Fig. 4, the
interface is seen by the fluid solver as a moving rigid wall and the expression for the
ghost cell velocities is again

VF1
Gh = (2VS · n−VF1

M · n)n + (VF1
M · t)t = 2

(
(VS −VF1

M ) · n
)
n + VF1

M . (4)
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Figure 3: Ghost cell setting in an embedded boundary method for fluid F1 with pre-
scribed velocity derived from a node-centered solid dynamics calculation. Remaining
fluid values extrapolated.

Figure 4: Ghost cell setting in an embedded boundary method for fluid F1 with pre-
scribed velocity derived from a node-centered solid dynamics calculation. Remaining
fluid values mirrored.
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1.4 Spatial Interpolation on Cartesian Meshes for Diffused
Boundary Methods

For the VTF application the treatment of the solid boundary as a moving rigid body
in the Eulerian fluid solver seems to be most appropriate. This is also suggested by
previous investigations [1]. Solving the Eikonal equation It + n · ∇ = 0 with pseudo
time steps would be possible to achieve a multi-dimensional extrapolation, but an
interpolation/extrapolation routine to calculate mirrored values efficiently is more
desirable as they are required to construct ghost cell values for moving rigid bodies
in non-coupled simulations anyhow.

The construction of a mirrored ghost cell value in a ghost cell center xij requires
the calculation on a space interpolated value in the point

x̃ = xij + 2ϕijnij.

The standard two-dimensional bilinear interpolation on a Cartesian grid is

u(x1, x2) = (1− t)(1− s)uij + t(1− s)ui+1,j + (1− t)sui,j+1 + tsui+1,j+1

with
t = (x1 − x1,i)/(x1,i+1 − x1,i),
s = (x2 − x2,j)/(x2,j+1 − x2,j).

As only discrete values from the interior (e.g. with ϕ < 0) can be considered the
latter formula must be adopted appropriately, if less than four points are available in
the interior. See the two left case in Fig. 5. In case of three points we approximate
the missing point value by linear extrapolation:

ũij = ui+1,j +ui,j+1 −ui+1,j+1

ũi+1,j = uij −ui,j+1 +ui+1,j+1

ũi,j+1 = uij −ui+1,j +ui+1,j+1

ũi+1,j+1 = −uij +ui+1,j +ui,j+1

In case of only two points we move the interpolation stencil by a full row or column
and apply an extrapolation into u(x1, x2) with |t| > 1 and/or |s| > 1, cf. lower left
case in Fig. 5.

• The same interpolation/extrapolation routine can be applied to approximate
fluid values at the nodal locations of the solid mesh, cf. right red case in Fig.
5.

• In order to achieve optimal computational performance the interpolation rou-
tine is called only once for each AMR patch. Therefore it must take a list of
points as an argument.

• A “slope-limiting” based on the ratio (ui+1−ui)/(ui−ui−1) is highly desirable
to avoid the inappropriate interpolation across discontinuities.
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Figure 5: Ghost cell setting in an embedded boundary method for fluid F1 with pre-
scribed velocity derived from a node-centered solid dynamics calculation. Remaining
fluid values mirrored.
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