vtf-logo

src/3d/equations/advection/rp/rpt3ad1.f

c
c
c     ==================================================================
      subroutine rpt3ad1(ixyz,icoor,maxm,meqn,mwaves,mbc,mx,
     &                   ql,qr,maux,aux1,aux2,aux3,imp,asdq,
     &                   bmasdq,bpasdq)
c     ==================================================================
      implicit double precision(a-h,o-z)
c
c     # Riemann solver in the transverse direction for the 
c     # advection equations.
c     #
c     # On input,
c
c     #    ql,qr is the data along some one-dimensional slice, as in rpn3
c     #         This slice is 
c     #             in the x-direction if ixyz=1,
c     #             in the y-direction if ixyz=2, or 
c     #             in the z-direction if ixyz=3.
c     #    asdq is an array of flux differences (A^* \Delta q).
c     #         asdq(i,:) is the flux difference propagating away from
c     #         the interface between cells i-1 and i.
c     #    imp = 1 if asdq = A^- \Delta q,  the left-going flux difference
c     #          2 if asdq = A^+ \Delta q, the right-going flux difference
c
c     #    aux2 is the auxiliary array (if method(7)=maux>0) along
c     #         the plane where this slice lies, say at j=J if ixyz=1.
c     #         aux2(:,:,1) contains data along j=J, k=k-1
c     #         aux2(:,:,2) contains data along j=J, k=k
c     #         aux2(:,:,3) contains data along j=J, k=k+1
c     #    aux1 is the auxiliary array along the plane with j=J-1
c     #    aux3 is the auxiliary array along the plane with j=J+1
c     
c     #      if ixyz=2 then aux2 is in some plane k=K, and
c     #         aux2(:,:,1)  contains data along i=I-1, k=K, etc.
c     
c     #      if ixyz=3 then aux2 is in some plane i=I, and
c     #         aux2(:,:,1)  contains data along j=j-1, i=I, etc.
c
c     # On output,

c     # If data is in x-direction (ixyz=1) then this routine does the
c     # splitting of  asdq (= A^* \Delta q, where * = + or -) ...
c
c     # into down-going flux difference bmasdq (= B^- A^* \Delta q)
c     #    and up-going flux difference bpasdq (= B^+ A^* \Delta q)
c     #    when icoor = 2,
c
c     # or
c
c     # into down-going flux difference bmasdq (= C^- A^* \Delta q)
c     #    and up-going flux difference bpasdq (= C^+ A^* \Delta q)
c     #    when icoor = 3.
c     #
c
c     # More generally, ixyz specifies what direction the slice of data is
c     # in, and icoor tells which transverse direction to do the splitting in:
c
c     # If ixyz = 1,  data is in x-direction and then
c     #       icoor = 2  =>  split in the y-direction  (iuvw=2)
c     #       icoor = 3  =>  split in the z-direction  (iuvw=3)
c
c     # If ixyz = 2,  data is in y-direction and then
c     #       icoor = 2  =>  split in the z-direction  (iuvw=3)
c     #       icoor = 3  =>  split in the x-direction  (iuvw=1)
c
c     # If ixyz = 3,  data is in z-direction and then
c     #       icoor = 2  =>  split in the x-direction  (iuvw=1)
c     #       icoor = 3  =>  split in the y-direction  (iuvw=2)
c
      dimension     ql(1-mbc:maxm+mbc, meqn)
      dimension     qr(1-mbc:maxm+mbc, meqn)
      dimension   asdq(1-mbc:maxm+mbc, meqn)
      dimension bmasdq(1-mbc:maxm+mbc, meqn)
      dimension bpasdq(1-mbc:maxm+mbc, meqn)
      dimension   aux1(1-mbc:maxm+mbc, maux, 3)
      dimension   aux2(1-mbc:maxm+mbc, maux, 3)
      dimension   aux3(1-mbc:maxm+mbc, maux, 3)
c
c
c     # set iuvw = 1 for u, 2 for v, 3 for w component of velocity
c     # depending on transverse direction:
      iuvw = ixyz + icoor - 1
      if (iuvw.gt.3) iuvw = iuvw-3
c
      do 10 i=2-mbc,mx+mbc
         i1 = i-2+imp    !#  =  i-1 for amdq,  i for apdq
         bmasdq(i,1) = dmin1(aux2(i1,iuvw,2), 0.d0) * asdq(i,1)
         if (icoor.eq.2) then
            bpasdq(i,1) = dmax1(aux3(i1,iuvw,2), 0.d0) * asdq(i,1)
         else
            bpasdq(i,1) = dmax1(aux2(i1,iuvw,3), 0.d0) * asdq(i,1)
         endif
   10 continue
c
      return
      end

<