vtf-logo

src/3d/equations/euler/rpznd/rpn3euzndswg.f

c
c
c     =====================================================
      subroutine rpn3euznd(ixyz,maxm,meqn,mwaves,mbc,mx,ql,qr,
     &     maux,auxl,auxr,wave,s,fl,fr)
c     =====================================================
c
c     # solve Riemann problems for the 3D ZND-Euler equations using 
c     # Steger & Warming - Flux Vector Splitting 
c
c     # On input, ql contains the state vector at the left edge of each cell
c     #           qr contains the state vector at the right edge of each cell
c     # This data is along a slice in the x-direction if ixyz=1
c     #                               the y-direction if ixyz=2.
c     #                               the z-direction if ixyz=3.
c
c     # On output, wave contains the waves, s the speeds, 
c     # fl and fr the positive and negative flux.
c
c     # Note that the i'th Riemann problem has left state qr(i-1,:)
c     #                                    and right state ql(i,:)
c     # From the basic routines, this routine is called with ql = qr
c
c     # Copyright (C) 2002 Ralf Deiterding
c     # Brandenburgische Universitaet Cottbus
c
      implicit double precision (a-h,o-z)
c
      dimension wave(1-mbc:maxm+mbc, meqn, mwaves)
      dimension    s(1-mbc:maxm+mbc, mwaves)
      dimension   ql(1-mbc:maxm+mbc, meqn)
      dimension   qr(1-mbc:maxm+mbc, meqn)
      dimension  dfl(1-mbc:maxm+mbc, meqn)
      dimension  dfr(1-mbc:maxm+mbc, meqn)
      dimension auxl(1-mbc:maxm+mbc, maux, 3)
      dimension auxr(1-mbc:maxm+mbc, maux, 3)
      double precision el(3), er(3)
      common /param/  gamma,gamma1,q0
c
c     # Method returns fluxes
c     ------------
      common /rpnflx/ mrpnflx
      mrpnflx = 1
c
c     # set mu to point to  the component of the system that corresponds
c     # to momentum in the direction of this slice, mv and mw to the 
c     # orthogonal momentums:
c
      if(ixyz .eq. 1)then
	  mu = 3
	  mv = 4
          mw = 5
      else if(ixyz .eq. 2)then
	  mu = 4
	  mv = 5
          mw = 3
      else
          mu = 5
          mv = 3
          mw = 4
      endif
c
c     #  Steger & Warming - Flux Vector Splitting 
c
      do 10 i=2-mbc,mx+mbc
         rhol = qr(i-1,1)+qr(i-1,2)
         rhor = ql(i  ,1)+ql(i  ,2)
         Y1l = qr(i-1,1)/rhol
         Y2l = qr(i-1,2)/rhol
         Y1r = ql(i  ,1)/rhor
         Y2r = ql(i  ,2)/rhor
         ul = qr(i-1,mu)/rhol
         ur = ql(i  ,mu)/rhor
         vl = qr(i-1,mv)/rhol
         vr = ql(i  ,mv)/rhor
         wl = qr(i-1,mw)/rhol
         wr = ql(i  ,mw)/rhor
	 pl = gamma1*(qr(i-1,6) - qr(i-1,2)*q0 - 
     &        0.5d0*(qr(i-1,mu)**2+qr(i-1,mv+qr(i-1,mw**2)/rhol)
	 pr = gamma1*(ql(i  ,6) - ql(i  ,2)*q0 - 
     &        0.5d0*(ql(i  ,mu)**2+ql(i  ,mv+ql(i  ,mw**2)/rhor)
         Hl = (qr(i-1,6)+pl)/rhol
         Hr = (ql(i  ,6)+pr)/rhor
c
         al2 = gamma*pl/rhol
         al  = dsqrt(al2)
         ar2 = gamma*pr/rhor
         ar  = dsqrt(ar2)
c
         el(1) = 0.5d0*(ul-al + dabs(ul-al))
         el(2) = 0.5d0*(ul    + dabs(ul)   )
         el(3) = 0.5d0*(ul+al + dabs(ul+al))
         er(1) = 0.5d0*(ur-ar - dabs(ur-ar))
         er(2) = 0.5d0*(ur    - dabs(ur)   )
         er(3) = 0.5d0*(ur+ar - dabs(ur+ar))
c
         facl = 0.5d0*rhol/gamma
         facr = 0.5d0*rhor/gamma
c
         taul  = facl*(el(1) + 2.d0*gamma1*el(2) + el(3))
         taur  = facr*(er(1) + 2.d0*gamma1*er(2) + er(3))
         zetal = al*facl*(el(1)-el(3)) 
         zetar = ar*facr*(er(1)-er(3)) 
c
         fl(i,1)  = Y1l*taul + Y1r*taur
         fl(i,2)  = Y2l*taul + Y2r*taur
         fl(i,mu) = ul*taul - zetal + ur*taur - zetar
         fl(i,mv) = vl*taul + vr*taur
         fl(i,mw) = wl*taul + wr*taur
         fl(i,6)  = Hl*taul - ul*zetal - 2.d0*el(2)*facl*al2 + 
     &              Hr*taur - ur*zetar - 2.d0*er(2)*facr*ar2
c
         do 20 m = 1, meqn
            fr(i,m) = -fl(i,m)
 20      continue
c
         do 10 mws=1,mwaves
            s(i,mws) = dmax1(dabs(el(mws)),dabs(er(mws)))
            do 10 m=1,meqn
               wave(i,m,mws) = 0.d0
 10   continue
c
      return
      end
c

<