vtf-logo

src/3d/equations/euler/rp/rpn3euhllg.f

c
c
c
c     ==================================================================
      subroutine rpn3eu(ixyz,maxm,meqn,mwaves,mbc,mx,ql,qr,
     &                  maux,auxl,auxr,wave,s,amdq,apdq)
c     ==================================================================
c
c     # Hybrid Roe-solver for the Euler equations 
c     # solve Riemann problems along one slice of data.
c     # Scheme is blended with HLL for robustness.
c
c     # solve Riemann problems along one slice of data.
c     # This data is along a slice in the x-direction if ixyz=1
c     #                               the y-direction if ixyz=2.
c     #                               the z-direction if ixyz=3.
c
c     # On input, ql contains the state vector at the left edge of each cell
c     #           qr contains the state vector at the right edge of each cell
c
c     # auxl(i,ma,2) contains auxiliary data for cells along this slice,
c     #    where ma=1,maux in the case where maux=method(7) > 0.
c     # auxl(i,ma,1) and auxl(i,ma,3) contain auxiliary data along
c     # neighboring slices that generally aren't needed in the rpn3 routine.
c
c     # On output, wave contains the waves, s the speeds, 
c     # amdq and apdq the positive and negative flux.
c
c     # Note that the i'th Riemann problem has left state qr(i-1,:)
c     #                                    and right state ql(i,:)
c     # From the basic routines, this routine is called with ql = qr
c
c     # Author: Ralf Deiterding
c
      implicit double precision (a-h,o-z)
      dimension wave(1-mbc:maxm+mbc, meqn, mwaves)
      dimension    s(1-mbc:maxm+mbc, mwaves)
      dimension   ql(1-mbc:maxm+mbc, meqn)
      dimension   qr(1-mbc:maxm+mbc, meqn)
      dimension amdq(1-mbc:maxm+mbc, meqn)
      dimension apdq(1-mbc:maxm+mbc, meqn)
      dimension auxl(1-mbc:maxm+mbc, maux, 3)
      dimension auxr(1-mbc:maxm+mbc, maux, 3)
c
c     local arrays -- common block comroe is passed to rpt3eu
c                     
c     ------------
      parameter (maxmrp = 1005) !# assumes atmost max(mx,my,mz) = 1000 with mbc=5
      parameter (minmrp = -4)   !# assumes at most mbc=5
      dimension delta(5), fl(minmrp:maxmrp,5), fr(minmrp:maxmrp,5)
      logical efix, hll, roe, hllfix
      common /param/  gamma,gamma1
      common /comroe/ u2v2w2(minmrp:maxmrp),
     &     u(minmrp:maxmrp),v(minmrp:maxmrp),w(minmrp:maxmrp),
     &     enth(minmrp:maxmrp),a(minmrp:maxmrp),g1a2(minmrp:maxmrp),
     &     euv(minmrp:maxmrp) 
c
      data efix /.true./   !# use entropy fix
      data hll  /.true./   !# use HLL instead of Roe solver, if unphysical values occur
      data roe  /.true./   !# turn off Roe solver when debugging HLL
c
c     # Riemann solver returns fluxes
c     ------------
      common /rpnflx/ mrpnflx
      mrpnflx = 1
c
      if (minmrp.gt.1-mbc .or. maxmrp .lt. maxm+mbc) then
         write(6,*) 'need to increase maxmrp in rpA'
         stop
      endif
c
c     # set mu to point to  the component of the system that corresponds
c     # to momentum in the direction of this slice, mv and mw to the 
c     # orthogonal momentums:
c
      if(ixyz .eq. 1)then
         mu = 2
         mv = 3
         mw = 4
      else if(ixyz .eq. 2)then
         mu = 3
         mv = 4
         mw = 2
      else
         mu = 4
         mv = 2
         mw = 3
      endif
c
c
c     # note that notation for u,v, and w reflects assumption that the 
c     # Riemann problems are in the x-direction with u in the normal
c     # direction and v and w in the orthogonal directions, but with the 
c     # above definitions of mu, mv, and mw the routine also works with 
c     # ixyz=2 and ixyz = 3
c     # and returns, for example, f0 as the Godunov flux g0 for the
c     # Riemann problems u_t + g(u)_y = 0 in the y-direction.
c
c
c     # Compute the Roe-averaged variables needed in the Roe solver.
c     # These are stored in the common block comroe since they are
c     # later used in routine rpt3eu to do the transverse wave 
c     # splitting.
c
      do 10 i = 2-mbc, mx+mbc
         rhsqrtl = dsqrt(qr(i-1,1))
         rhsqrtr = dsqrt(ql(i,1))
         pl = gamma1*(qr(i-1,5) - 0.5d0*(qr(i-1,mu)**2 + 
     &           qr(i-1,mv)**2 + qr(i-1,mw)**2)/qr(i-1,1))
         pr = gamma1*(ql(i,5) - 0.5d0*(ql(i,mu)**2 + 
     &           ql(i,mv)**2 + ql(i,mw)**2)/ql(i,1))
         rhsq2 = rhsqrtl + rhsqrtr
         u(i) = (qr(i-1,mu)/rhsqrtl + ql(i,mu)/rhsqrtr) / rhsq2
         v(i) = (qr(i-1,mv)/rhsqrtl + ql(i,mv)/rhsqrtr) / rhsq2
         w(i) = (qr(i-1,mw)/rhsqrtl + ql(i,mw)/rhsqrtr) / rhsq2
         enth(i) = (((qr(i-1,5)+pl)/rhsqrtl 
     &             + (ql(i,5)+pr)/rhsqrtr)) / rhsq2
         u2v2w2(i) = u(i)**2 + v(i)**2 + w(i)**2
         a2 = gamma1*(enth(i) - .5d0*u2v2w2(i))
         a(i) = dsqrt(a2)
         g1a2(i) = gamma1 / a2
         euv(i) = enth(i) - u2v2w2(i) 
   10 continue
c
c
c     # now split the jump in q1d at each interface into waves
c
c     # find a1 thru a5, the coefficients of the 5 eigenvectors:
      do 20 i = 2-mbc, mx+mbc
         delta(1) = ql(i,1) - qr(i-1,1)
         delta(2) = ql(i,mu) - qr(i-1,mu)
         delta(3) = ql(i,mv) - qr(i-1,mv)
         delta(4) = ql(i,mw) - qr(i-1,mw)
         delta(5) = ql(i,5) - qr(i-1,5)
         a4 = g1a2(i) * (euv(i)*delta(1) 
     &      + u(i)*delta(2) + v(i)*delta(3) + w(i)*delta(4) 
     &      - delta(5))
         a2 = delta(3) - v(i)*delta(1)
         a3 = delta(4) - w(i)*delta(1)
         a5 = (delta(2) + (a(i)-u(i))*delta(1) - a(i)*a4) / (2.d0*a(i))
         a1 = delta(1) - a4 - a5
c
c        # Compute the waves.
c        # Note that the 2-wave, 3-wave and 4-wave travel at the same speed 
c        # and are lumped together in wave(.,.,2).  The 5-wave is then stored 
c        # in wave(.,.,3).
c
         wave(i,1,1)  = a1
         wave(i,mu,1) = a1*(u(i)-a(i))
         wave(i,mv,1) = a1*v(i)
         wave(i,mw,1) = a1*w(i)
         wave(i,5,1)  = a1*(enth(i) - u(i)*a(i))
         s(i,1) = u(i)-a(i)
c
         wave(i,1,2)  = a4
         wave(i,mu,2) = a4*u(i)
         wave(i,mv,2) = a4*v(i)          + a2
         wave(i,mw,2) = a4*w(i)          + a3
         wave(i,5,2)  = a4*0.5d0*u2v2w2(i)  + a2*v(i) + a3*w(i)
         s(i,2) = u(i)
c
         wave(i,1,3)  = a5
         wave(i,mu,3) = a5*(u(i)+a(i))
         wave(i,mv,3) = a5*v(i)
         wave(i,mw,3) = a5*w(i)
         wave(i,5,3)  = a5*(enth(i)+u(i)*a(i))
         s(i,3) = u(i)+a(i)
   20 continue
c
      call flx3(ixyz,maxm,meqn,mbc,mx,qr,maux,auxr,apdq)
      call flx3(ixyz,maxm,meqn,mbc,mx,ql,maux,auxl,amdq)
c
      do 35 i = 1-mbc, mx+mbc
         do 35 m=1,meqn
            fl(i,m) = amdq(i,m)
            fr(i,m) = apdq(i,m)
 35   continue  
c
      if (.not.roe) go to 900
c
c    # compute flux differences amdq and apdq.
c    ---------------------------------------
c
      if (efix) go to 110
c
c     # no entropy fix
c     ----------------
c
c     # amdq = SUM s*wave   over left-going waves
c
      do 100 m=1,meqn
         do 100 i=2-mbc, mx+mbc
            amdq(i,m) = 0.d0
            do 90 mws=1,mwaves
               if (s(i,mws) .lt. 0.d0) then
                  amdq(i,m) = amdq(i,m) + s(i,mws)*wave(i,m,mws)
               endif
 90         continue
 100  continue
      go to 900     
c
c-----------------------------------------------------
c
  110 continue
c
c     # With entropy fix
c     ------------------
c
c    # compute flux differences amdq and apdq.
c    # First compute amdq as sum of s*wave for left going waves.
c    # Incorporate entropy fix by adding a modified fraction of wave
c    # if s should change sign.
c
      do 200 i = 2-mbc, mx+mbc
c
c        # check 1-wave:
c        ---------------
c
         rhoim1 = qr(i-1,1)
         pim1 = gamma1*(qr(i-1,5) - 0.5d0*(qr(i-1,mu)**2 
     &           + qr(i-1,mv)**2 + qr(i-1,mw)**2) / rhoim1)
         if ((rhoim1.le.0.d0.or.pim1.le.0.d0).and.hll) go to 200
         cim1 = dsqrt(gamma*pim1/rhoim1)
         s0 = qr(i-1,mu)/rhoim1 - cim1     !# u-c in left state (cell i-1)
c
c
c        # check for fully supersonic case:
         if (s0.ge.0.d0 .and. s(i,1).gt.0.d0)then 
c           # everything is right-going
            do 60 m=1,meqn
               amdq(i,m) = 0.d0
   60       continue
            go to 200 
         endif
c
         rho1 = qr(i-1,1) + wave(i,1,1)
         rhou1 = qr(i-1,mu) + wave(i,mu,1)
         rhov1 = qr(i-1,mv) + wave(i,mv,1)
         rhow1 = qr(i-1,mw) + wave(i,mw,1)
         en1 = qr(i-1,5) + wave(i,5,1)
         p1 = gamma1*(en1 - 0.5d0*(rhou1**2 + rhov1**2 + 
     &                rhow1**2)/rho1)
         if ((rho1.le.0.d0.or.p1.le.0.d0).and.hll) go to 200
         c1 = dsqrt(gamma*p1/rho1)
         s1 = rhou1/rho1 - c1  !# u-c to right of 1-wave
         if (s0.lt.0.d0 .and. s1.gt.0.d0) then
c           # transonic rarefaction in the 1-wave
            sfract = s0 * (s1-s(i,1)) / (s1-s0)
         else if (s(i,1) .lt. 0.d0) then
c           # 1-wave is leftgoing
            sfract = s(i,1)
         else
c           # 1-wave is rightgoing
            sfract = 0.d0   !# this shouldn't happen since s0 < 0
         endif
         do 120 m=1,meqn
            amdq(i,m) = sfract*wave(i,m,1)
  120    continue
c
c        # check 2-wave:
c        ---------------
c
         if (s(i,2) .ge. 0.d0) go to 200  !# 2-,3- and 4- waves are rightgoing
         do 140 m=1,meqn
            amdq(i,m) = amdq(i,m) + s(i,2)*wave(i,m,2)
  140    continue
c
c        # check 3-wave:
c        ---------------
c
         rhoi = ql(i,1)
         pi = gamma1*(ql(i,5) - 0.5d0*(ql(i,mu)**2 
     &           + ql(i,mv)**2 + ql(i,mw)**2) / rhoi)
         if ((rhoi.le.0.d0.or.pi.le.0.d0).and.hll) go to 200
         ci = dsqrt(gamma*pi/rhoi)
         s3 = ql(i,mu)/rhoi + ci     !# u+c in right state  (cell i)
c
         rho2 = ql(i,1) - wave(i,1,3)
         rhou2 = ql(i,mu) - wave(i,mu,3)
         rhov2 = ql(i,mv) - wave(i,mv,3)
         rhow2 = ql(i,mw) - wave(i,mw,3)
         en2 = ql(i,5) - wave(i,5,3)
         p2 = gamma1*(en2 - 0.5d0*(rhou2**2 + rhov2**2 +
     &                rhow2**2)/rho2)
         if ((rho2.le.0.d0.or.p2.le.0.d0).and.hll) go to 200
         c2 = dsqrt(gamma*p2/rho2)
         s2 = rhou2/rho2 + c2   !# u+c to left of 3-wave
         if (s2 .lt. 0.d0 .and. s3.gt.0.d0 ) then
c           # transonic rarefaction in the 3-wave
            sfract = s2 * (s3-s(i,3)) / (s3-s2)
         else if (s(i,3) .lt. 0.d0) then
c           # 3-wave is leftgoing
            sfract = s(i,3)
         else 
c           # 3-wave is rightgoing
            go to 200
         endif
c
         do 160 m=1,meqn
            amdq(i,m) = amdq(i,m) + sfract*wave(i,m,3)
  160    continue
  200 continue
c
  900 continue
c
      if (hll) then
         do 350 i = 2-mbc, mx+mbc
            hllfix = .false.
            if (.not.roe) hllfix = .true.
c     
            rhol  = qr(i-1,1)  + wave(i,1,1)
            rhoul = qr(i-1,mu) + wave(i,mu,1)
            rhovl = qr(i-1,mv) + wave(i,mv,1)
            rhowl = qr(i-1,mw) + wave(i,mw,1)
            El    = qr(i-1,5)  + wave(i,5,1)
            pl = gamma1*(El - 0.5d0*(rhoul**2 + rhovl**2 + 
     &           rhowl**2)/rhol)
            if (rhol.le.0.d0.or.pl.le.0.d0) hllfix = .true.
c     
            rhor  = ql(i,1)  - wave(i,1,3)
            rhour = ql(i,mu) - wave(i,mu,3)
            rhovr = ql(i,mv) - wave(i,mv,3)
            rhowr = ql(i,mw) - wave(i,mw,3)
            Er    = ql(i,5)  - wave(i,5,3)
            pr = gamma1*(Er - 0.5d0*(rhour**2 + rhovr**2 + 
     &           rhowr**2)/rhor)
            if (rhor.le.0.d0.or.pr.le.0.d0) hllfix = .true.
c     
            if (hllfix) then
c               if (roe) write (6,*) 'Switching to HLL in',i
c     
               rl = qr(i-1,1)
               ul = qr(i-1,mu)/rl
               pl = gamma1*(qr(i-1,5) - 0.5d0*(qr(i-1,mu)**2+
     &              qr(i-1,mv)**2+qr(i-1,mw)**2)/rl)
               al = dsqrt(gamma*pl/rl)
c     
               rr = ql(i  ,1)
               ur = ql(i  ,mu)/rr
               pr = gamma1*(ql(i  ,5) - 0.5d0*(ql(i  ,mu)**2+
     &              ql(i  ,mv)**2+ql(i  ,mw)**2)/rr)
               ar = dsqrt(gamma*pr/rr)
c     
               sl = dmin1(ul-al,ur-ar)
               sr = dmax1(ul+al,ur+ar)
c
               do m=1,meqn
                  if (sl.ge.0.d0) fg = fr(i-1,m)
                  if (sr.le.0.d0) fg = fl(i,m)
                  if (sl.lt.0.d0.and.sr.gt.0.d0) 
     &                 fg = (sr*fr(i-1,m) - sl*fl(i,m) + 
     &                 sl*sr*(ql(i,m)-qr(i-1,m)))/ (sr-sl)
                  amdq(i,m) =   fg-fr(i-1,m)
               enddo
               s(i,1) = sl
               s(i,2) = 0.d0
               s(i,3) = sr
            endif     
 350     continue
      endif
c
      do 300 i = 2-mbc, mx+mbc
         do 300 m=1,meqn
            amdq(i,m) = fr(i-1,m) + amdq(i,m) 
            apdq(i,m) = -amdq(i,m) 
 300  continue
c
      return
      end

<