vtf-logo

src/2d/equations/euler/rpm/rpn2meuhllc.f

c
c
c     =====================================================
      subroutine rpn2meu(ixy,maxm,meqn,mwaves,mbc,mx,ql,qr,maux,
     &                  auxl,auxr,wave,s,amdq,apdq)
c     =====================================================
c
c     # Solve Riemann problems for the 2D two-component Euler equations 
c     # using HLLC. Use flux difference splitting formulation for full
c     # compatibility to Wave Propagation Method.
c
c     # On input, ql contains the state vector at the left edge of each cell
c     #           qr contains the state vector at the right edge of each cell
c
c     # This data is along a slice in the x-direction if ixy=1 
c     #                            or the y-direction if ixy=2.
c     # On output, wave contains the waves, s the speeds, 
c     # amdq and apdq the positive and negative flux.
c
c     # Note that the i'th Riemann problem has left state qr(i-1,:)
c     #                                    and right state ql(i,:)
c     # From the basic routines, this routine is called with ql = qr
c
c     # Copyright (C) 2003-2007 California Institute of Technology
c     # Ralf Deiterding, ralf@amroc.net
c
      implicit double precision (a-h,o-z)
      dimension wave(1-mbc:maxm+mbc, meqn, mwaves)
      dimension    s(1-mbc:maxm+mbc, mwaves)
      dimension   ql(1-mbc:maxm+mbc, meqn)
      dimension   qr(1-mbc:maxm+mbc, meqn)
      dimension auxl(1-mbc:maxm+mbc, maux)
      dimension auxr(1-mbc:maxm+mbc, maux)
      dimension apdq(1-mbc:maxm+mbc, meqn)
      dimension amdq(1-mbc:maxm+mbc, meqn)
c
c     local arrays -- common block comroe is passed to rpt2eu
c     ------------
      parameter (maxm2 = 10005)  !# assumes at most 10000x10000 grid with mbc=5
      parameter (minm2 = -4)     !# assumes at most mbc=5
      dimension qls(4), qrs(4)
c
      common /comroe/ u2v2(minm2:maxm2),
     &     u(minm2:maxm2),v(minm2:maxm2),enth(minm2:maxm2),
     &     a(minm2:maxm2),g1a2(minm2:maxm2),euv(minm2:maxm2),
     &     p(minm2:maxm2) 
c
c     # Riemann solver returns flux differences
c     ------------
      common /rpnflx/ mrpnflx
      mrpnflx = 0
c
      if (minm2.gt.1-mbc .or. maxm2 .lt. maxm+mbc) then
         write(6,*) 'need to increase maxm2 in rpA'
         stop
      endif
c
c     # set mu to point to  the component of the system that corresponds
c     # to momentum in the direction of this slice, mv to the orthogonal
c     # momentum:
c
      if (ixy.eq.1) then
         mu = 2
         mv = 3
      else
         mu = 3
         mv = 2
      endif
c
c     # note that notation for u and v reflects assumption that the 
c     # Riemann problems are in the x-direction with u in the normal
c     # direciton and v in the orthogonal direcion, but with the above
c     # definitions of mu and mv the routine also works with ixy=2
c     # and returns, for example, f0 as the Godunov flux g0 for the
c     # Riemann problems u_t + g(u)_y = 0 in the y-direction.
c
c     # compute the Roe-averaged variables needed in the Roe solver.
c     # These are stored in the common block comroe since they are
c     # later used in routine rpt2eu to do the transverse wave splitting.
c
      do 10 i = 2-mbc, mx+mbc
         if (qr(i-1,1).lt.0.d0.or.ql(i,1).lt.0.d0) then 
            write (6,*) 'Unrecoverable error in density',i
            stop
         endif
c
         rl = qr(i-1,1)
         ul = qr(i-1,mu)/rl
         vl = qr(i-1,mv)/rl
         El = qr(i-1,4)
         pl = (El - 0.5d0*(ul**2+vl**2)*rl - qr(i-1,6))/qr(i-1,5)
c     
         rr = ql(i  ,1)
         ur = ql(i  ,mu)/rr
         vr = ql(i  ,mv)/rr
         Er = ql(i  ,4)
         pr = (Er - 0.5d0*(ur**2+vr**2)*rr - ql(i  ,6))/ql(i  ,5)
c
         rhsqrtl = dsqrt(qr(i-1,1))
         rhsqrtr = dsqrt(ql(i,1))
         rhsq2 = rhsqrtl + rhsqrtr
         gamma1 = rhsq2 / ( qr(i-1,5)*rhsqrtl + ql(i,5)*rhsqrtr ) 
         xjota = ( pl*qr(i-1,5)*rhsqrtl + pr*ql(i,5)*rhsqrtr ) / rhsq2
         p(i) = xjota*gamma1
c                      
         u(i) = (qr(i-1,mu)/rhsqrtl + ql(i,mu)/rhsqrtr) / rhsq2
         v(i) = (qr(i-1,mv)/rhsqrtl + ql(i,mv)/rhsqrtr) / rhsq2
         u2v2(i) = u(i)**2 + v(i)**2
         enth(i) = (((qr(i-1,4)+pl)/rhsqrtl
     &             + (ql(i,4)+pr)/rhsqrtr)) / rhsq2
c                      
         a2 = gamma1*(enth(i) - .5d0*u2v2(i))
         if (a2.lt.0.d0) then 
            write (6,*) 'Unrecoverable error in speed of sound in',i
            stop
         endif         
         a(i) = dsqrt(a2)
         g1a2(i) = gamma1 / a2
         euv(i) = enth(i) - u2v2(i) 
c     
         sl = u(i)-a(i)
         sr = u(i)+a(i)
         ss = (pr-pl+rl*ul*(sl-ul)-rr*ur*(sr-ur))/
     &        (rl*(sl-ul)-rr*(sr-ur))
c
         qrs(1)  = rr*(sr-ur)/(sr-ss)
         qrs(mu) = qrs(1)*ss
         qrs(mv) = qrs(1)*vr
         qrs(4)  = qrs(1)*(Er/rr+
     &        (ss-ur)*(ss+pr/(rr*(sr-ur))))
c
         qls(1)  = rl*(sl-ul)/(sl-ss)
         qls(mu) = qls(1)*ss
         qls(mv) = qls(1)*vl
         qls(4)  = qls(1)*(El/rl+
     &        (ss-ul)*(ss+pl/(rl*(sl-ul))))
c
         do m=1,4
            wave(i,m,1) = qls(m) - qr(i-1,m)
            wave(i,m,2) = qrs(m) - qls(m)
            wave(i,m,3) = ql(i,m) - qrs(m)
         enddo
         do m=5,6
            wave(i,m,1) = 0.d0
            wave(i,m,2) = ql(i,m) - qr(i-1,m)
            wave(i,m,3) = 0.d0
         enddo
c
         s(i,1) = sl
         s(i,2) = ss
         s(i,3) = sr
c
         do m=1,meqn
            amdq(i,m) = 0.d0
            apdq(i,m) = 0.d0
            do mw=1,mwaves
               if (s(i,mw) .lt. 0.d0) then
                  amdq(i,m) = amdq(i,m) + s(i,mw)*wave(i,m,mw)
               else
                  apdq(i,m) = apdq(i,m) + s(i,mw)*wave(i,m,mw)
               endif
            enddo
         enddo
 10   continue
      return
      end
c

<