vtf-logo

src/2d/equations/euler/rpznd/rpn2euzndvlg.f

c
c
c     =====================================================
      subroutine rpn2euznd(ixy,maxm,meqn,mwaves,mbc,mx,ql,qr,
     &                     maux,auxl,auxr,wave,s,fl,fr)
c     =====================================================
c
c     # solve Riemann problems for the 2D ZND-Euler equations using 
c     # van Leer's Flux Vector Splitting following Shuen's approach for
c     # multicomponent gas mixtures
c
c     # On input, ql contains the state vector at the left edge of each cell
c     #           qr contains the state vector at the right edge of each cell
c
c     # This data is along a slice in the x-direction if ixy=1 
c     #                            or the y-direction if ixy=2.
c
c     # Note that the i'th Riemann problem has left state qr(i-1,:)
c     #                                    and right state ql(i,:)
c     # From the basic clawpack routines, this routine is called with ql = qr
c
c     # Copyright (C) 2002 Ralf Deiterding
c     # Brandenburgische Universitaet Cottbus
c
      implicit double precision (a-h,o-z)
c
      dimension wave(1-mbc:maxm+mbc, meqn, mwaves)
      dimension    s(1-mbc:maxm+mbc, mwaves)
      dimension   ql(1-mbc:maxm+mbc, meqn)
      dimension   qr(1-mbc:maxm+mbc, meqn)
      dimension   fl(1-mbc:maxm+mbc, meqn)
      dimension   fr(1-mbc:maxm+mbc, meqn)
      double precision Ml, Mr
      dimension fvl(5), fvr(5), sl(3), sr(3)
      common /param/  gamma,gamma1,q0
c
c     # Method returns fluxes
c     ------------
      common /rpnflx/ mrpnflx
      mrpnflx = 1
c
c     # set mu to point to  the component of the system that corresponds
c     # to momentum in the direction of this slice, mv to the orthogonal
c     # momentum:
c
      if (ixy.eq.1) then
         mu = 3
         mv = 4
      else
         mu = 4
         mv = 3
      endif
c
c     # Van Leer's Flux Vector Splitting
c
      gamma2 = gamma**2-1
      do 10 i=2-mbc,mx+mbc
         rhol = qr(i-1,1)+qr(i-1,2)
         rhor = ql(i  ,1)+ql(i  ,2)
         Y1l = qr(i-1,1)/rhol
         Y2l = qr(i-1,2)/rhol
         Y1r = ql(i  ,1)/rhor
         Y2r = ql(i  ,2)/rhor
         ul = qr(i-1,mu)/rhol
         ur = ql(i  ,mu)/rhor
         vl = qr(i-1,mv)/rhol
         vr = ql(i  ,mv)/rhor
         El = qr(i-1,5)/rhol
         Er = ql(i  ,5)/rhor
         pl = gamma1*(qr(i-1,5) - qr(i-1,2)*q0 - 
     &        0.5d0*(qr(i-1,mu)**2+qr(i-1,mv)**2)/rhol)
         pr = gamma1*(ql(i  ,5) - ql(i  ,2)*q0 - 
     &        0.5d0*(ql(i  ,mu)**2+ql(i  ,mv)**2)/rhor)
         Hl = El+pl/rhol
         Hr = Er+pr/rhor
c
         al2 = gamma*pl/rhol
         al  = dsqrt(al2)
         ar2 = gamma*pr/rhor
         ar  = dsqrt(ar2)
c
         Ml = ul/al
         Mr = ur/ar
c
         sl(1) = ul-al
         sl(2) = ul
         sl(3) = ul+al
         sr(1) = ur-ar
         sr(2) = ur
         sr(3) = ur+ar
c
         if (Ml.ge.1.d0) then
            facl    = rhol*ul
            fvl(1)  = facl*Y1l
            fvl(2)  = facl*Y2l
            fvl(mu) = facl*ul+pl
            fvl(mv) = facl*vl
            fvl(5)  = facl*El+ul*pl
         else if (Ml.le.-1.d0) then
            do m = 1,meqn
               fvl(m) = 0.d0
            enddo
         else
            fhl = gamma*(El - Y2l*q0 - 0.5d0*(ul**2+vl**2))/al2
            xl = fhl/(1.d0+2.d0*fhl)
            facl    = 0.25d0*rhol*al*(Ml+1.d0)**2
            fvl(1)  = facl*Y1l
            fvl(2)  = facl*Y2l
            fvl(mu) = facl*2.d0*al/gamma*(0.5d0*gamma1*Ml+1.d0)
            fvl(mv) = facl*vl
            fvl(5)  = facl*(Hl-xl*(ul-al)**2)
         endif
c
         if (Mr.le.-1.d0) then
            facr    = rhor*ur
            fvr(1)  = facr*Y1r
            fvr(2)  = facr*Y2r
            fvr(mu) = facr*ur+pr
            fvr(mv) = facr*vr
            fvr(5)  = facr*Er+ur*pr
         else if (Mr.ge.1.d0) then
            do m = 1,meqn
               fvr(m) = 0.d0
            enddo
         else
            fhr = gamma*(Er - Y2r*q0 - 0.5d0*(ur**2+vr**2))/ar2
            xr = fhr/(1.d0+2.d0*fhr)
            facr    = -0.25d0*rhor*ar*(Mr-1.d0)**2
            fvr(1)  = facr*Y1r
            fvr(2)  = facr*Y2r
            fvr(mu) = facr*2.d0*ar/gamma*(0.5d0*gamma1*Mr-1.d0)
            fvr(mv) = facr*vr
            fvr(5)  = facr*(Hr-xr*(ur+ar)**2)
         endif
c
         do 20 m = 1,meqn
            fl(i,m) = fvl(m) + fvr(m)
            fr(i,m) = -fl(i,m)
 20      continue
c
         if (dabs(Ml).lt.1.d0) then
            facl = (gamma+3.d0)/(2.d0*gamma+dabs(Ml)*(3.d0-gamma))
         else
            facl = 1.d0
         endif
         if (dabs(Mr).lt.1.d0) then
            facr = (gamma+3.d0)/(2.d0*gamma+dabs(Mr)*(3.d0-gamma))
         else
            facr = 1.d0
         endif
c
         do 10 mw=1,mwaves
            s(i,mw) = dmax1(dabs(facl*sl(mw)),dabs(facr*sr(mw)))
            do 10 m=1,meqn
               wave(i,m,mw) = 0.d0
 10   continue
c
      return
      end
c

<