vtf-logo

src/2d/equations/euler/rpznd/rpn2euzndhll.f

c
c =========================================================
      subroutine rpn2euznd(ixy,maxm,meqn,mwaves,mbc,mx,ql,qr,maux,
     &                     auxl,auxr,wave,s,amdq,apdq)
c =========================================================
c
c     # Hybrid Roe-solver for the 2D ZND-Euler equations 
c     # solve Riemann problems along one slice of data.
c     # Scheme is blended with HLL for robustness.
c
c     # On input, ql contains the state vector at the left edge of each cell
c     #           qr contains the state vector at the right edge of each cell
c
c     # This data is along a slice in the x-direction if ixy=1 
c     #                            or the y-direction if ixy=2.
c     # On output, wave contains the waves, 
c     #            s the speeds, 
c     #            amdq the  left-going flux difference  A^- \Delta q
c     #            apdq the right-going flux difference  A^+ \Delta q
c
c     # Note that the i'th Riemann problem has left state qr(i-1,:)
c     #                                    and right state ql(i,:)
c     # From the basic routines, this routine is called with ql = qr
c
c     # Author: Ralf Deiterding
c
      implicit double precision (a-h,o-z)
c
      dimension wave(1-mbc:maxm+mbc, meqn, mwaves)
      dimension    s(1-mbc:maxm+mbc, mwaves)
      dimension   ql(1-mbc:maxm+mbc, meqn)
      dimension   qr(1-mbc:maxm+mbc, meqn)
      dimension  apdq(1-mbc:maxm+mbc, meqn)
      dimension  amdq(1-mbc:maxm+mbc, meqn)
c
c     local arrays -- common block comroe is passed to rpt2eu
c     ------------
      parameter (maxm2 = 10005)  !# assumes at most 10000x10000 grid with mbc=5
      parameter (minm2 = -4)     !# assumes at most mbc=5
      dimension delta(5), fl(minm2:maxm2,5), fr(minm2:maxm2,5)
      logical efix, pfix, hll, roe, hllfix
      common /param/  gamma,gamma1,q0
      common /comroe/ u2v2(minm2:maxm2),u(minm2:maxm2),v(minm2:maxm2),
     &                enth(minm2:maxm2),a(minm2:maxm2),Y(2,minm2:maxm2)
c
      data efix /.true./    !# use entropy fix for transonic rarefactions
      data pfix /.true./   !# use Larrouturou's positivity fix for species
      data hll  /.true./   !# use HLL instead of Roe solver, if unphysical values occur
      data roe  /.true./   !# turn off Roe solver when debugging HLL
c
c     # Riemann solver returns flux differences
c     ------------
      common /rpnflx/ mrpnflx
      mrpnflx = 0
c
      if (minm2.gt.1-mbc .or. maxm2 .lt. maxm+mbc) then
         write(6,*) 'need to increase maxm2 in rpA'
         stop
      endif
c     
c     # set mu to point to  the component of the system that corresponds
c     # to momentum in the direction of this slice, mv to the orthogonal
c     # momentum:
c
      if (ixy.eq.1) then
         mu = 3
         mv = 4
      else
         mu = 4
         mv = 3
      endif
c
c     # note that notation for u and v reflects assumption that the 
c     # Riemann problems are in the x-direction with u in the normal
c     # direciton and v in the orthogonal direcion, but with the above
c     # definitions of mu and mv the routine also works with ixy=2
c     # and returns, for example, f0 as the Godunov flux g0 for the
c     # Riemann problems u_t + g(u)_y = 0 in the y-direction.
c
c
c     # compute the Roe-averaged variables needed in the Roe solver.
c     # These are stored in the common block comroe since they are
c     # later used in routine rpt2eu to do the transverse wave splitting.
c
      do 10 i=2-mbc,mx+mbc
c
         pl = gamma1*(qr(i-1,5) - qr(i-1,2)*q0 - 
     &        0.5d0*(qr(i-1,mu)**2+qr(i-1,mv)**2)/(qr(i-1,1)+qr(i-1,2)))
         pr = gamma1*(ql(i,  5) - ql(i,  2)*q0 - 
     &        0.5d0*(ql(i,  mu)**2+ql(i,  mv)**2)/(ql(i,  1)+ql(i,  2)))
         rhsqrtl = dsqrt(qr(i-1,1) + qr(i-1,2))  
         rhsqrtr = dsqrt(ql(i,  1) + ql(i,  2))
         rhsq2 = rhsqrtl + rhsqrtr
         u(i) = (qr(i-1,mu)/rhsqrtl + ql(i,mu)/rhsqrtr) / rhsq2
         v(i) = (qr(i-1,mv)/rhsqrtl + ql(i,mv)/rhsqrtr) / rhsq2
         u2v2(i) = u(i)**2 + v(i)**2
         enth(i) = (((qr(i-1,5)+pl)/rhsqrtl
     &             + (ql(i  ,5)+pr)/rhsqrtr)) / rhsq2
         Y(1,i) = (qr(i-1,1)/rhsqrtl + ql(i,1)/rhsqrtr) / rhsq2
         Y(2,i) = (qr(i-1,2)/rhsqrtl + ql(i,2)/rhsqrtr) / rhsq2
c        # speed of sound
         a2 = gamma1*(enth(i) - 0.5d0*u2v2(i) - Y(2,i)*q0)
         a(i) = dsqrt(a2) 
c
   10 continue
c
      do 30 i=2-mbc,mx+mbc
c
c        # find a1 thru a4, the coefficients of the 4 eigenvectors:
c
         do k = 1, 5
            delta(k) = ql(i,k) - qr(i-1,k)
         enddo
         drho = delta(1) + delta(2)
c
         a2  = gamma1/a(i)**2 * (drho*0.5d0*u2v2(i) - delta(2)*q0 
     &        - (u(i)*delta(mu)+v(i)*delta(mv)) + delta(5))
         a3 = delta(mv) - v(i)*drho
         a4 = 0.5d0*( a2 - ( u(i)*drho - delta(mu) )/a(i) )
         a1 = a2 - a4 
c
c        # Compute the waves.
c
c      # 1-wave
         wave(i,1,1)  = a1*Y(1,i)
         wave(i,2,1)  = a1*Y(2,i)
         wave(i,mu,1) = a1*(u(i) - a(i))
         wave(i,mv,1) = a1*v(i)
         wave(i,5,1)  = a1*(enth(i) - u(i)*a(i))
         s(i,1) = u(i)-a(i)
c
c      # 2-wave
         wave(i,1,2)  = delta(1) - Y(1,i)*a2
         wave(i,2,2)  = delta(2) - Y(2,i)*a2         
         wave(i,mu,2) = (drho - a2)*u(i)
         wave(i,mv,2) = (drho - a2)*v(i) + a3
         wave(i,5,2)  = (drho - a2)*0.5d0*u2v2(i) + 
     &        q0*(delta(2) - Y(2,i)*a2)  + a3*v(i)
         s(i,2) = u(i)
c
c      # 3-wave
         wave(i,1,3)  = a4*Y(1,i)
         wave(i,2,3)  = a4*Y(2,i)
         wave(i,mu,3) = a4*(u(i) + a(i))
         wave(i,mv,3) = a4*v(i)
         wave(i,5,3)  = a4*(enth(i) + u(i)*a(i))
         s(i,3) = u(i)+a(i)
c                  
   30 continue
c
      call flx2(ixy,maxm,meqn,mbc,mx,qr,maux,auxr,apdq)
      call flx2(ixy,maxm,meqn,mbc,mx,ql,maux,auxl,amdq)
c
      do 35 i = 1-mbc, mx+mbc
         do 35 m=1,meqn
            fl(i,m) = amdq(i,m)
            fr(i,m) = apdq(i,m)
 35   continue  
c
      if (.not.roe) go to 900
c
c     # compute flux differences amdq and apdq.
c     ---------------------------------------
c
      if (efix) go to 110
c
c     # no entropy fix
c     ----------------
c
c     # amdq = SUM s*wave   over left-going waves
c     # apdq = SUM s*wave   over right-going waves
c
      do 100 m=1,meqn
         do 100 i=2-mbc, mx+mbc
            amdq(i,m) = 0.d0
            apdq(i,m) = 0.d0
            do 90 mw=1,mwaves
               if (s(i,mw) .lt. 0.d0) then
                  amdq(i,m) = amdq(i,m) + s(i,mw)*wave(i,m,mw)
               else
                  apdq(i,m) = apdq(i,m) + s(i,mw)*wave(i,m,mw)
               endif
   90       continue
  100 continue
      go to 900
  110 continue
c
c     # With entropy fix
c     ------------------
c
c     # compute flux differences amdq and apdq.
c     # First compute amdq as sum of s*wave for left going waves.
c     # Incorporate entropy fix by adding a modified fraction of wave
c     # if s should change sign.
c
      do 200 i=2-mbc,mx+mbc
c
c        # check 1-wave:
c        ---------------
c
         rk1  = qr(i-1,1)
         rk2  = qr(i-1,2)
         rhou = qr(i-1,mu)
         rhov = qr(i-1,mv)
         rhoE = qr(i-1,5) 
         rho  = rk1 + rk2
         p = gamma1*(rhoE - rk2*q0 - 0.5d0*(rhou**2+rhov**2)/rho)
         if ((rho.le.0.d0.or.p.le.0.d0).and.hll) go to 200
         c = dsqrt(gamma*p/rho)
         s0 = rhou/rho - c     !# u-c in left state (cell i-1)
*        write(6,*) 'left state 0', a(i), c, T
c 
c        # check for fully supersonic case:
         if (s0.ge.0.d0 .and. s(i,1).gt.0.d0)  then
c           # everything is right-going
            do 60 m=1,meqn
               amdq(i,m) = 0.d0
   60       continue
            go to 200
         endif
c
         rk1  = rk1  + wave(i,1,1)
         rk2  = rk2  + wave(i,2,1)
         rhou = rhou + wave(i,mu,1)
         rhov = rhov + wave(i,mv,1)
         rhoE = rhoE + wave(i,5,1)
         rho  = rk1 + rk2
         p = gamma1*(rhoE - rk2*q0 - 0.5d0*(rhou**2+rhov**2)/rho)
         if ((rho.le.0.d0.or.p.le.0.d0).and.hll) go to 200
         c = dsqrt(gamma*p/rho)
         s1 = rhou/rho - c  !# u-c to right of 1-wave
*        write(6,*) 'left state 1', a(i), c, T
c
         if (s0.lt.0.d0 .and. s1.gt.0.d0) then
c           # transonic rarefaction in the 1-wave
            sfract = s0 * (s1-s(i,1)) / (s1-s0)
         else if (s(i,1) .lt. 0.d0) then
c           # 1-wave is leftgoing
            sfract = s(i,1)
         else
c           # 1-wave is rightgoing
            sfract = 0.d0   !# this shouldn't happen since s0 < 0
         endif
         do 120 m=1,meqn
            amdq(i,m) = sfract*wave(i,m,1)
  120    continue 
c
c        # check 2-wave:
c        ---------------
c
         if (s(i,2) .ge. 0.d0) go to 200  !# 2-wave is rightgoing
         do 140 m=1,meqn
            amdq(i,m) = amdq(i,m) + s(i,2)*wave(i,m,2)
  140    continue
c
c        # check 3-wave:
c        ---------------
c
         rk1  = ql(i,1)
         rk2  = ql(i,2)
         rhou = ql(i,mu)
         rhov = ql(i,mv)
         rhoE = ql(i,5) 
         rho  = rk1 + rk2
         p = gamma1*(rhoE - rk2*q0 - 0.5d0*(rhou**2+rhov**2)/rho)
         if ((rho.le.0.d0.or.p.le.0.d0).and.hll) go to 200
         c = dsqrt(gamma*p/rho)
         s3 = rhou/rho + c     !# u+c in right state  (cell i)
*        write(6,*) 'right state 1', a(i), c, T
c          
         rk1  = rk1  - wave(i,1,3)
         rk2  = rk2  - wave(i,2,3)
         rhou = rhou - wave(i,mu,3)
         rhov = rhov - wave(i,mv,3)
         rhoE = rhoE - wave(i,5,3)
         rho  = rk1 + rk2
         p = gamma1*(rhoE - rk2*q0 - 0.5d0*(rhou**2+rhov**2)/rho)
         if ((rho.le.0.d0.or.p.le.0.d0).and.hll) go to 200
         c = dsqrt(gamma*p/rho)
         s2 = rhou/rho + c   !# u+c to left of 3-wave
*        write(6,*) 'right state 0', a(i), c, T
c
         if (s2 .lt. 0.d0 .and. s3.gt.0.d0) then
c           # transonic rarefaction in the 3-wave
            sfract = s2 * (s3-s(i,3)) / (s3-s2)
         else if (s(i,3) .lt. 0.d0) then
c           # 3-wave is leftgoing
            sfract = s(i,3)
         else
c           # 3-wave is rightgoing
            go to 200
         endif
c
         do 160 m=1,meqn
            amdq(i,m) = amdq(i,m) + sfract*wave(i,m,3)
  160    continue
  200 continue
c
c     # compute the rightgoing flux differences:
c     # df = SUM s*wave   is the total flux difference and apdq = df - amdq
c
      do 220 m=1,meqn
         do 220 i = 2-mbc, mx+mbc
            df = 0.d0
            do 210 mw=1,mwaves
               df = df + s(i,mw)*wave(i,m,mw)
  210       continue
            apdq(i,m) = df - amdq(i,m)
  220 continue 
c
  900 continue
c
      if (hll) then
         do 350 i = 2-mbc, mx+mbc
            hllfix = .false.
            if (.not.roe) hllfix = .true.
c     
            rho1l = qr(i-1,1)  + wave(i,1,1)
            rho2l = qr(i-1,2)  + wave(i,2,1)
            rhoul = qr(i-1,mu) + wave(i,mu,1)
            rhovl = qr(i-1,mv) + wave(i,mv,1)
            El    = qr(i-1,5)  + wave(i,5,1)
            pl = gamma1*(El - rho2l*q0 - 
     &           0.5d0*(rhoul**2 + rhovl**2)/(rho1l+rho2l))
            if (rho1l+rho2l.le.0.d0.or.pl.le.0.d0) 
     &           hllfix = .true.
c     
            rho1r = ql(i,1)  - wave(i,1,3)
            rho2r = ql(i,2)  - wave(i,2,3)
            rhour = ql(i,mu) - wave(i,mu,3)
            rhovr = ql(i,mv) - wave(i,mv,3)
            Er    = ql(i,5 ) - wave(i,5,3)
            pr = gamma1*(Er - rho2r*q0 - 
     &           0.5d0*(rhour**2 + rhovr**2)/(rho1r+rho2r))
            if (rho1r+rho2r.le.0.d0.or.pr.le.0.d0) 
     &           hllfix = .true.
c     
            if (hllfix) then
*               if (roe) write (6,*) 'Switching to HLL in',i
c     
               rl = qr(i-1,1) + qr(i-1,2)
               ul = qr(i-1,mu)/rl
               pl = gamma1*(qr(i-1,5) - qr(i-1,2)*q0 - 
     &              0.5d0*(qr(i-1,mu)**2+qr(i-1,mv)**2)/rl)
               al = dsqrt(gamma*pl/rl)
c     
               rr = ql(i  ,1) + ql(i  ,2)
               ur = ql(i  ,mu)/rr
               pr = gamma1*(ql(i  ,5) - ql(i  ,2)*q0 - 
     &              0.5d0*(ql(i  ,mu)**2+ql(i  ,mv)**2)/rr)
               ar = dsqrt(gamma*pr/rr)
c     
               sl = dmin1(ul-al,ur-ar)
               sr = dmax1(ul+al,ur+ar)
c
               do m=1,meqn
                  if (sl.ge.0.d0) fg = fr(i-1,m)
                  if (sr.le.0.d0) fg = fl(i,m)
                  if (sl.lt.0.d0.and.sr.gt.0.d0) 
     &                 fg = (sr*fr(i-1,m) - sl*fl(i,m) + 
     &                 sl*sr*(ql(i,m)-qr(i-1,m)))/ (sr-sl)
                  amdq(i,m) =   fg-fr(i-1,m)
                  apdq(i,m) = -(fg-fl(i  ,m))
               enddo
               s(i,1) = sl
               s(i,2) = 0.d0
               s(i,3) = sr
            endif     
 350     continue
      endif
c
      if (pfix) then
         do 300 i=2-mbc,mx+mbc
            amdr = amdq(i,1)+amdq(i,2)
            apdr = apdq(i,1)+apdq(i,2)
            rhol = qr(i-1,1)+qr(i-1,2)
            rhor = ql(i  ,1)+ql(i  ,2)
            do 300 m=1,2
               if (qr(i-1,mu)+amdr.gt.0.d0) then
                  Z = qr(i-1,m)/rhol
               else
                  Z = ql(i  ,m)/rhor
               endif
               amdq(i,m) = Z*amdr + (Z-qr(i-1,m)/rhol)*qr(i-1,mu)
               apdq(i,m) = Z*apdr - (Z-ql(i  ,m)/rhor)*ql(i  ,mu)
 300     continue    
      endif
c
      return
      end
c

<