vtf-logo

src/2d/equations/euler/rpznd/rpn2euzndexact.f

c
c =========================================================
      subroutine rpn2euznd(ixy,maxm,meqn,mwaves,mbc,mx,ql,qr,maux,
     &     auxl,auxr,wave,s,amdq,apdq)
c =========================================================
c
c     # Riemann solver for the 2D ZND-Euler equations.
c     # The waves are computed using the Roe approximation.
c
c     # On input, ql contains the state vector at the left edge of each cell
c     #           qr contains the state vector at the right edge of each cell
c
c     # This data is along a slice in the x-direction if ixy=1 
c     #                            or the y-direction if ixy=2.
c     # On output, wave contains the waves, 
c     #            s the speeds, 
c     #            amdq the  left-going flux difference  A^- \Delta q
c     #            apdq the right-going flux difference  A^+ \Delta q
c
c     # Note that the i'th Riemann problem has left state qr(i-1,:)
c     #                                    and right state ql(i,:)
c     # From the basic clawpack routines, this routine is called with ql = qr
c
c     # Author: Ralf Deiterding (based on rpn2euexact.f)
c
      implicit double precision (a-h,o-z)
c 
      dimension wave(1-mbc:maxm+mbc, meqn, mwaves)
      dimension    s(1-mbc:maxm+mbc, mwaves)
      dimension   ql(1-mbc:maxm+mbc, meqn)
      dimension   qr(1-mbc:maxm+mbc, meqn)
      dimension  apdq(1-mbc:maxm+mbc, meqn)
      dimension  amdq(1-mbc:maxm+mbc, meqn)
c
c     local arrays -- common block comroe is passed to rpt2eu
c     ------------
      parameter (maxm2 = 10005)  !# assumes at most 10000x10000 grid with mbc=5
      parameter (minm2 = -4)     !# assumes at most mbc=5
      dimension delta(5)
      dimension f0(minm2:maxm2,5), fl(minm2:maxm2,5), fr(minm2:maxm2,5)
      dimension sl(2), sr(2)
      common /param/  gamma,gamma1,q0
      common /comroe/ u2v2(minm2:maxm2),u(minm2:maxm2),v(minm2:maxm2),
     &       enth(minm2:maxm2),a(minm2:maxm2),Y(2,minm2:maxm2)
c
c     # Riemann solver returns flux differences
c     ------------
      common /rpnflx/ mrpnflx
      mrpnflx = 0
c
      if (minm2.gt.1-mbc .or. maxm2 .lt. maxm+mbc) then
	 write(6,*) 'need to increase maxm2 in rpA'
	 stop
      endif
c     
c     # set mu to point to  the component of the system that corresponds
c     # to momentum in the direction of this slice, mv to the orthogonal
c     # momentum:
c
      if (ixy.eq.1) then
         mu = 3
         mv = 4
      else
         mu = 4
         mv = 3
      endif
c
c     # note that notation for u and v reflects assumption that the 
c     # Riemann problems are in the x-direction with u in the normal
c     # direciton and v in the orthogonal direcion, but with the above
c     # definitions of mu and mv the routine also works with ixy=2
c     # and returns, for example, f0 as the Godunov flux g0 for the
c     # Riemann problems u_t + g(u)_y = 0 in the y-direction.
c
c
c     # compute the Roe-averaged variables needed in the Roe solver.
c     # These are stored in the common block comroe since they are
c     # later used in routine rpt2eu to do the transverse wave splitting.
c
      do 10 i=2-mbc,mx+mbc
c
	 pl = gamma1*(qr(i-1,5) - qr(i-1,2)*q0 - 
     &        0.5d0*(qr(i-1,mu)**2+qr(i-1,mv)**2)/(qr(i-1,1)+qr(i-1,2)))
	 pr = gamma1*(ql(i,  5) - ql(i,  2)*q0 - 
     &        0.5d0*(ql(i,  mu)**2+ql(i,  mv)**2)/(ql(i,  1)+ql(i,  2)))
         rhsqrtl = dsqrt(qr(i-1,1) + qr(i-1,2))  
         rhsqrtr = dsqrt(ql(i,  1) + ql(i,  2))
         rhsq2 = rhsqrtl + rhsqrtr
	 u(i) = (qr(i-1,mu)/rhsqrtl + ql(i,mu)/rhsqrtr) / rhsq2
	 v(i) = (qr(i-1,mv)/rhsqrtl + ql(i,mv)/rhsqrtr) / rhsq2
	 u2v2(i) = u(i)**2 + v(i)**2
	 enth(i) = (((qr(i-1,5)+pl)/rhsqrtl
     &		   + (ql(i  ,5)+pr)/rhsqrtr)) / rhsq2
         Y(1,i) = (qr(i-1,1)/rhsqrtl + ql(i,1)/rhsqrtr) / rhsq2
         Y(2,i) = (qr(i-1,2)/rhsqrtl + ql(i,2)/rhsqrtr) / rhsq2
c        # speed of sound
         a2 = gamma1*(enth(i) - 0.5d0*u2v2(i) - Y(2,i)*q0)
         a(i) = dsqrt(a2) 
c
   10    continue
c
      do 30 i=2-mbc,mx+mbc
c
c        # find a1 thru a3, the coefficients of the 4 eigenvectors:
c
         do k = 1, 5
            delta(k) = ql(i,k) - qr(i-1,k)
         enddo
         drho = delta(1) + delta(2)
c
         a2  = gamma1/a(i)**2 * (drho*0.5d0*u2v2(i) - delta(2)*q0 
     &        - (u(i)*delta(mu)+v(i)*delta(mv)) + delta(5))
         a3 = delta(mv) - v(i)*drho
         a4 = 0.5d0*( a2 - ( u(i)*drho - delta(mu) )/a(i) )
         a1 = a2 - a4 
c
c        # Compute the waves.
c
c      # 1-wave
         wave(i,1,1)  = a1*Y(1,i)
         wave(i,2,1)  = a1*Y(2,i)
         wave(i,mu,1) = a1*(u(i) - a(i))
         wave(i,mv,1) = a1*v(i)
         wave(i,5,1)  = a1*(enth(i) - u(i)*a(i))
         s(i,1) = u(i)-a(i)
c
c      # 2-wave
         wave(i,1,2)  = delta(1) - Y(1,i)*a2
         wave(i,2,2)  = delta(2) - Y(2,i)*a2         
         wave(i,mu,2) = (drho - a2)*u(i)
         wave(i,mv,2) = (drho - a2)*v(i) + a3
         wave(i,5,2)  = (drho - a2)*0.5d0*u2v2(i) + 
     &        q0*(delta(2) - Y(2,i)*a2)  + a3*v(i)
         s(i,2) = u(i)
c
c      # 3-wave
         wave(i,1,3)  = a4*Y(1,i)
         wave(i,2,3)  = a4*Y(2,i)
         wave(i,mu,3) = a4*(u(i) + a(i))
         wave(i,mv,3) = a4*v(i)
         wave(i,5,3)  = a4*(enth(i) + u(i)*a(i))
         s(i,3) = u(i)+a(i)
c                  
   30 continue
c
c     # compute Godunov flux f0:
c     --------------------------
c
c     # compute Godunov flux f0 at each interface.  
c     # Uses exact Riemann solver
c
      do 200 i = 2-mbc, mx+mbc
c
	 rhol = qr(i-1,1) + qr(i-1,2)
	 rhor = ql(i  ,1) + qr(i  ,2)
         Y2l = qr(i-1,2)/rhol
         Y2r = ql(i  ,2)/rhor
	 ul = qr(i-1,mu)/rhol
	 ur = ql(i  ,mu)/rhor
	 vl = qr(i-1,mv)/rhol
	 vr = ql(i  ,mv)/rhor
	 pl = gamma1*(qr(i-1,5) - qr(i-1,2)*q0 - 0.5d0*(ul**2+vl**2)*rhol)
	 pr = gamma1*(ql(i,  5) - ql(i,  2)*q0 - 0.5d0*(ur**2+vr**2)*rhor)
c
c        # iterate to find pstar, ustar:
c
         alpha = 1.
         pstar = 0.5*(pl+pr)
         wr = dsqrt(pr*rhor) * phi(pstar/pr)
         wl = dsqrt(pl*rhol) * phi(pstar/pl)
c        if (pl.eq.pr .and. rhol.eq.rhor) go to 60
c
   40    do 50 iter=1,20
	    p1 = (ul-ur+pr/wr+pl/wl) / (1./wr + 1./wl)
	    pstar = dmax1(p1,1d-6)*alpha + (1.-alpha)*pstar
	    wr1 = wr
	    wl1 = wl
            wr = dsqrt(pr*rhor) * phi(pstar/pr)
            wl = dsqrt(pl*rhol) * phi(pstar/pl)
	    if (dmax1(abs(wr1-wr),dabs(wl1-wl)) .lt. 1d-6)
     &	       go to 60
 50      continue
c
c        # nonconvergence:
         alpha = alpha/2.
         if (alpha .gt. 0.001) go to 40
   	    write(6,*) 'no convergence',wr1,wr,wl1,wl
	    wr = .5*(wr+wr1)
	    wl = .5*(wl+wl1)
c
   60    continue
         ustar = (pl-pr+wr*ur+wl*ul) / (wr+wl)
c
c        # left wave:
c        ============
c
         if (pstar .gt. pl) then
c
c            # shock:
             sl(1) = ul - wl/rhol
             sr(1) = sl(1)
             rho1 = wl/(ustar-sl(1))
c
	   else
c
c            # rarefaction:
             cl = dsqrt(gamma*pl/rhol)
             cstar = cl + 0.5*gamma1*(ul-ustar)
             sl(1) = ul-cl
             sr(1) = ustar-cstar
             rho1 = (pstar/pl)**(1./gamma) * rhol
	   endif
c
c        # right wave:
c        =============
c
         if (pstar .ge. pr) then
c
c            # shock
             sl(2) = ur + wr/rhor
             sr(2) = sl(2)
             rho2 = wr/(sl(2)-ustar)
c
	   else
c
c            # rarefaction:
             cr = dsqrt(gamma*pr/rhor)
             cstar = cr + 0.5*gamma1*(ustar-ur)
             sr(2) = ur+cr
             sl(2) = ustar+cstar
             rho2 = (pstar/pr)**(1./gamma)*rhor
	   endif
c
c        # compute flux:
c        ===============
c
c        # compute state (rhos,us,ps) at x/t = 0:
c
         if (sl(1).gt.0) then
	    rhos = rhol
	    us = ul
	    ps = pl
            vs = vl
            Y2s  = Y2l
         else if (sr(1).le.0. .and. ustar.ge. 0.) then
	    rhos = rho1
	    us = ustar
	    ps = pstar
            vs = vl
            Y2s  = Y2l
         else if (ustar.lt.0. .and. sl(2).ge. 0.) then
	    rhos = rho2
	    us = ustar
	    ps = pstar
            vs = vr
            Y2s  = Y2r
         else if (sr(2).lt.0) then
	    rhos = rhor
	    us = ur
	    ps = pr
            vs = vr
            Y2s  = Y2r
         else if (sl(1).le.0. .and. sr(1).ge.0.) then
c           # transonic 1-rarefaction 
            us = (gamma1*ul + 2.*cl)/(gamma+1.)
   	    e0 = pl/(rhol**gamma)
	    rhos = (us**2/(gamma*e0))**(1./gamma1)
 	    ps = e0*rhos**gamma
            vs = vl
            Y2s  = Y2l
         else if (sl(2).le.0. .and. sr(2).ge.0.) then
c           # transonic 3-rarefaction 
            us = (gamma1*ur - 2.*cr)/(gamma+1.)
	    e0 = pr/(rhor**gamma)
	    rhos = (us**2/(gamma*e0))**(1./gamma1)
	    ps = e0*rhos**gamma
            vs = vr
            Y2s  = Y2r
	    endif
c
         f0(i,1)  = (1.d0-Y2s)*rhos*us
         f0(i,2)  = Y2s*rhos*us
         f0(i,mu) = rhos*us**2 + ps
         f0(i,mv) = rhos*us*vs
         f0(i,5)  = us*(gamma*ps/gamma1 + Y2s*rhos*q0 + 
     &        0.5*rhos*(us**2+vs**2))
  200    continue
c
c     # compute fluxes in each cell:
c
      do 210 i = 1-mbc, mx+mbc
c
c        # at left edge of cell:
         rho = ql(i,1)+ql(i,2)
         ul = ql(i,mu)/rho
         p = gamma1*(ql(i,5) - ql(i,2)*q0 - 
     &        0.5d0*(ql(i,mu)**2+ql(i,mv)**2)/rho)
         fl(i,1)  = ql(i,1)*ul
         fl(i,2)  = ql(i,2)*ul
         fl(i,mu) = ql(i,mu)*ul + p
         fl(i,mv) = ql(i,mv)*ul
         fl(i,5)  = ul*(ql(i,5) + p)
c
c        # at right edge of cell:
         rho = qr(i,1)+qr(i,2)
         ur = qr(i,mu)/rho
         p = gamma1*(qr(i,5) - qr(i,2)*q0 -
     &        0.5d0*(qr(i,mu)**2+qr(i,mv)**2)/rho)
         fr(i,1)  = qr(i,1)*ur
         fr(i,2)  = qr(i,2)*ur
         fr(i,mu) = qr(i,mu)*ur + p
         fr(i,mv) = qr(i,mv)*ur
         fr(i,5)  = ur*(qr(i,5) + p)
c
 210  continue
c
c     # compute the leftgoing and rightgoing flux differences:
      do 220 m=1,meqn
         do 220 i = 2-mbc, mx+mbc
	    amdq(i,m) = f0(i,m) - fr(i-1,m)
	    apdq(i,m) = fl(i,m) - f0(i,m)
 220  continue
c     
      return
      end
c
c
      double precision function phi(w)
      implicit double precision (a-h,o-z)
      common /param/  gamma,gamma1,q0
c
      sqg = dsqrt(gamma)
      if (w .gt. 1.) then
          phi = dsqrt(w*(gamma+1.)/2. + gamma1/2.)
        else if (w .gt. 0.99999) then
	  phi = sqg
	else if (w .gt. .999) then
	  phi = sqg + (2*gamma**2 - 3.*gamma + 1)
     &          *(w-1.) / (4.*sqg)
	else
          phi = gamma1*(1.-w) / (2.*sqg*(1.-w**(gamma1/(2.*gamma))))
	endif
      return
      end

<