vtf-logo

src/1d/equations/euler/rpznd/rp1euzndvijag.f

c
c
c     =====================================================
      subroutine rp1euznd(maxmx,meqn,mwaves,mbc,mx,ql,qr,
     &     maux,auxl,auxr,wave,s,fl,fr)
c     =====================================================
c
c     # solve Riemann problems for the 1D ZND-Euler equations using 
c     # the Flux-Vector-Splitting of Vijayasundaram
c
c     # On input, ql contains the state vector at the left edge of each cell
c     #           qr contains the state vector at the right edge of each cell
c
c     # This data is along a slice in the x-direction if ixy=1 
c     #                            or the y-direction if ixy=2.
c
c     # On output, wave contains the waves, s the speeds, 
c     # fl and fr the positive and negative flux.
c
c     # Note that the i'th Riemann problem has left state qr(i-1,:)
c     #                                    and right state ql(i,:)
c     # From the basic clawpack routines, this routine is called with ql = qr
c
c     # Copyright (C) 2002 Ralf Deiterding
c     # Brandenburgische Universitaet Cottbus
c
      implicit double precision (a-h,o-z)
c
      dimension wave(1-mbc:maxmx+mbc, meqn, mwaves)
      dimension    s(1-mbc:maxmx+mbc, mwaves)
      dimension   ql(1-mbc:maxmx+mbc, meqn)
      dimension   qr(1-mbc:maxmx+mbc, meqn)
      dimension   fl(1-mbc:maxmx+mbc, meqn)
      dimension   fr(1-mbc:maxmx+mbc, meqn)
      double precision el(3), er(3)
      common /param/  gamma,gamma1,q0
c
c     # Riemann solver returns flux differences
c     ------------
      common /rpnflx/ mrpnflx
      mrpnflx = 1
c
      do 10 i=2-mbc,mx+mbc
         rho1l = qr(i-1,1)
         rho1r = ql(i  ,1)
         rho2l = qr(i-1,2)
         rho2r = ql(i  ,2)
         rhoul = qr(i-1,3)
         rhour = ql(i  ,3)
         rhoEl = qr(i-1,4)
         rhoEr = ql(i  ,4)
         rhol  = rho1l+rho2l
         rhor  = rho1r+rho2r
c
         rho  = 0.5d0*(rhol  + rhor )
         rho1 = 0.5d0*(rho1l + rho1r)
         rho2 = 0.5d0*(rho2l + rho2r)
         rhou = 0.5d0*(rhoul + rhour)
         rhov = 0.5d0*(rhovl + rhovr)
         rhoE = 0.5d0*(rhoEl + rhoEr)
c
         Y1 = rho1/rho
         Y2 = rho2/rho
         u = rhou/rho
	 p = gamma1*(rhoE - rho2*q0 - 0.5d0*rho*u**2)
         H = (rhoE+p)/rho
         if (p.le.0.d0.or.rho.le.0.d0) 
     &        write (6,*) 'Error in middle state in',i,p,pl,pr,
     &        rho,rhol,rhor,a,al,ar
         a = dsqrt(gamma*p/rho)
         f = 0.5d0/a**2
c
         el1 = 0.5d0*(u-a + dabs(u-a))
         el2 = 0.5d0*(u   + dabs(u)  )
         el3 = 0.5d0*(u+a + dabs(u+a))
         er1 = 0.5d0*(u-a - dabs(u-a))
         er2 = 0.5d0*(u   - dabs(u)  )
         er3 = 0.5d0*(u+a - dabs(u+a))
c
         zl = el1-el3
         ol = el1-2.d0*el2+el3
         zr = er1-er3
         or = er1-2.d0*er2+er3
         dul = a*(rhol*u-rhoul)
         dur = a*(rhor*u-rhour)
         dEl = gamma1*(rhoEl-rho2l*q0+0.5d0*rhol*u**2-rhoul*u)
         dEr = gamma1*(rhoEr-rho2r*q0+0.5d0*rhor*u**2-rhour*u)
         f1 =   f*(zl*dul + ol*dEl + zr*dur + or*dEr)
         f2 = a*f*(ol*dul + zl*dEl + or*dur + zr*dEr)
c
         fl(i,1) = rho1l*el2 + rho1r*er2 + Y1*f1
         fl(i,2) = rho2l*el2 + rho2r*er2 + Y2*f1
         fl(i,3) = rhoul*el2 + rhour*er2 +  u*f1 -   f2
         fl(i,4) = rhoEl*el2 + rhoEr*er2 +  H*f1 - u*f2
c
         do 20 m = 1,meqn
            fr(i,m) = -fl(i,m)
 20      continue
c
         s(i,1) = u-a
         s(i,2) = u
         s(i,3) = u+a
         do 10 mw=1,mwaves
            do 10 m=1,meqn
               wave(i,m,mw) = 0.d0
 10   continue
c
      return
      end
c

<