vtf-logo

src/1d/equations/euler/rpznd/rp1euzndexact.f

c
c =========================================================
      subroutine rp1euznd(maxmx,meqn,mwaves,mbc,mx,ql,qr,maux,
     &     auxl,auxr,wave,s,dfl,dfr)
c =========================================================
c
c     # Riemann solver for the 1D ZND-Euler equations.
c     # The waves are computed using the Roe approximation.
c
c     # On input, ql contains the state vector at the left edge of each cell
c     #           qr contains the state vector at the right edge of each cell
c
c     # On output, wave contains the waves, 
c     #            s the speeds, 
c     #            amdq the  left-going flux difference  A^- \Delta q
c     #            apdq the right-going flux difference  A^+ \Delta q
c
c     # Note that the i'th Riemann problem has left state qr(i-1,:)
c     #                                    and right state ql(i,:)
c     # From the basic clawpack routines, this routine is called with ql = qr
c
c     # Copyright (C) 2002 Ralf Deiterding
c     # Brandenburgische Universitaet Cottbus
c
      implicit double precision (a-h,o-z)
c 
      dimension wave(1-mbc:maxmx+mbc, meqn, mwaves)
      dimension    s(1-mbc:maxmx+mbc, mwaves)
      dimension   ql(1-mbc:maxmx+mbc, meqn)
      dimension   qr(1-mbc:maxmx+mbc, meqn)
      dimension  dfr(1-mbc:maxmx+mbc, meqn)
      dimension  dfl(1-mbc:maxmx+mbc, meqn)
c
c
c     # local storage
c     ---------------
      parameter (max2 = 100002)  !# assumes at most 100000 grid points with mbc=2
      dimension u(-1:max2), enth(-1:max2), a(-1:max2)
      common /param/  gamma,gamma1,q0
c
c     define local arrays
c
      dimension delta(4), Y(2,-1:max2)
      dimension f0(-1:max2,4), fl(-1:max2,4), fr(-1:max2,4)
      dimension sl(2), sr(2)
c
c     # Riemann solver returns flux differences
c     ------------
      common /rpnflx/ mrpnflx
      mrpnflx = 0
c
      if (-1.gt.1-mbc .or. max2 .lt. maxmx+mbc) then
	 write(6,*) 'need to increase max2 in rp'
	 stop
      endif
c
c
c     # Compute Roe-averaged quantities:
c
      do 10 i=2-mbc,mx+mbc
c
	 pl = gamma1*(qr(i-1,4) - qr(i-1,2)*q0 - 
     &        0.5d0*qr(i-1,3)**2/(qr(i-1,1)+qr(i-1,2)))
	 pr = gamma1*(ql(i,  4) - ql(i,  2)*q0 - 
     &        0.5d0*ql(i,  3)**2/(ql(i,  1)+ql(i,  2)))
         rhsqrtl = dsqrt(qr(i-1,1) + qr(i-1,2))  
         rhsqrtr = dsqrt(ql(i,  1) + ql(i,  2))
         rhsq2 = rhsqrtl + rhsqrtr
	 u(i) = (qr(i-1,3)/rhsqrtl + ql(i,3)/rhsqrtr) / rhsq2
	 enth(i) = (((qr(i-1,4)+pl)/rhsqrtl
     &		   + (ql(i  ,4)+pr)/rhsqrtr)) / rhsq2
         Y(1,i) = (qr(i-1,1)/rhsqrtl + ql(i,1)/rhsqrtr) / rhsq2
         Y(2,i) = (qr(i-1,2)/rhsqrtl + ql(i,2)/rhsqrtr) / rhsq2
c        # speed of sound
         a2 = gamma1*(enth(i) - 0.5d0*u(i)**2 - Y(2,i)*q0)
         a(i) = dsqrt(a2) 
c
   10    continue
c
      do 30 i=2-mbc,mx+mbc
c
c        # find a1 thru a3, the coefficients of the 4 eigenvectors:
c
         do k = 1, 4
            delta(k) = ql(i,k) - qr(i-1,k)
         enddo
         drho = delta(1) + delta(2)
c
         a2  = gamma1/a(i)**2 * (drho*0.5d0*u(i)**2 - delta(2)*q0 
     &        - u(i)*delta(3) + delta(4))
         a3 = 0.5d0*( a2 - ( u(i)*drho - delta(3) )/a(i) )
         a1 = a2 - a3 
c
c        # Compute the waves.
c
c      # 1-wave
         wave(i,1,1) = a1*Y(1,i)
         wave(i,2,1) = a1*Y(2,i)
         wave(i,3,1) = a1*(u(i) - a(i))
         wave(i,4,1) = a1*(enth(i) - u(i)*a(i))
         s(i,1) = u(i)-a(i)
c
c      # 2-wave
         wave(i,1,2) = delta(1) - Y(1,i)*a2
         wave(i,2,2) = delta(2) - Y(2,i)*a2         
         wave(i,3,2) = (drho - a2)*u(i)
         wave(i,4,2) = (drho - a2)*0.5d0*u(i)**2 + 
     &        q0*(delta(2) - Y(2,i)*a2)
         s(i,2) = u(i)
c
c      # 3-wave
         wave(i,1,3) = a3*Y(1,i)
         wave(i,2,3) = a3*Y(2,i)
         wave(i,3,3) = a3*(u(i) + a(i))
         wave(i,4,3) = a3*(enth(i) + u(i)*a(i))
         s(i,3) = u(i)+a(i)
c                  
   30 continue
c
c     # compute Godunov flux f0:
c     --------------------------
c
c     # compute Godunov flux f0 at each interface.  
c     # Uses exact Riemann solver
c
      do 200 i = 2-mbc, mx+mbc
c
	 rhol = qr(i-1,1) + qr(i-1,2)
	 rhor = ql(i  ,1) + qr(i  ,2)
         Y2l = qr(i-1,2)/rhol
         Y2r = ql(i  ,2)/rhor
	 ul = qr(i-1,3)/rhol
	 ur = ql(i  ,3)/rhor
	 pl = gamma1*(qr(i-1,4) - qr(i-1,2)*q0 - 0.5d0*ul**2*rhol)
	 pr = gamma1*(ql(i,  4) - ql(i,  2)*q0 - 0.5d0*ur**2*rhor)
c
c        # iterate to find pstar, ustar:
c
         alpha = 1.
         pstar = 0.5*(pl+pr)
         wr = dsqrt(pr*rhor) * phi(pstar/pr)
         wl = dsqrt(pl*rhol) * phi(pstar/pl)
c        if (pl.eq.pr .and. rhol.eq.rhor) go to 60
c
   40    do 50 iter=1,20
	    p1 = (ul-ur+pr/wr+pl/wl) / (1./wr + 1./wl)
	    pstar = dmax1(p1,1d-6)*alpha + (1.-alpha)*pstar
	    wr1 = wr
	    wl1 = wl
            wr = dsqrt(pr*rhor) * phi(pstar/pr)
            wl = dsqrt(pl*rhol) * phi(pstar/pl)
	    if (dmax1(abs(wr1-wr),dabs(wl1-wl)) .lt. 1d-6)
     &	       go to 60
 50      continue
c
c        # nonconvergence:
         alpha = alpha/2.
         if (alpha .gt. 0.001) go to 40
   	    write(6,*) 'no convergence',wr1,wr,wl1,wl
	    wr = .5*(wr+wr1)
	    wl = .5*(wl+wl1)
c
   60    continue
         ustar = (pl-pr+wr*ur+wl*ul) / (wr+wl)
c
c        # left wave:
c        ============
c
         if (pstar .gt. pl) then
c
c            # shock:
             sl(1) = ul - wl/rhol
             sr(1) = sl(1)
             rho1 = wl/(ustar-sl(1))
c
	   else
c
c            # rarefaction:
             cl = dsqrt(gamma*pl/rhol)
             cstar = cl + 0.5*gamma1*(ul-ustar)
             sl(1) = ul-cl
             sr(1) = ustar-cstar
             rho1 = (pstar/pl)**(1./gamma) * rhol
	   endif
c
c        # right wave:
c        =============
c
         if (pstar .ge. pr) then
c
c            # shock
             sl(2) = ur + wr/rhor
             sr(2) = sl(2)
             rho2 = wr/(sl(2)-ustar)
c
	   else
c
c            # rarefaction:
             cr = dsqrt(gamma*pr/rhor)
             cstar = cr + 0.5*gamma1*(ustar-ur)
             sr(2) = ur+cr
             sl(2) = ustar+cstar
             rho2 = (pstar/pr)**(1./gamma)*rhor
	   endif
c
c        # compute flux:
c        ===============
c
c        # compute state (rhos,us,ps) at x/t = 0:
c
         if (sl(1).gt.0) then
	    rhos = rhol
	    us = ul
	    ps = pl
            Y2s  = Y2l
         else if (sr(1).le.0. .and. ustar.ge. 0.) then
	    rhos = rho1
	    us = ustar
	    ps = pstar
            Y2s  = Y2l
         else if (ustar.lt.0. .and. sl(2).ge. 0.) then
	    rhos = rho2
	    us = ustar
	    ps = pstar
            Y2s  = Y2r
         else if (sr(2).lt.0) then
	    rhos = rhor
	    us = ur
	    ps = pr
            Y2s  = Y2r
         else if (sl(1).le.0. .and. sr(1).ge.0.) then
c           # transonic 1-rarefaction 
            us = (gamma1*ul + 2.*cl)/(gamma+1.)
   	    e0 = pl/(rhol**gamma)
	    rhos = (us**2/(gamma*e0))**(1./gamma1)
 	    ps = e0*rhos**gamma
            Y2s  = Y2l
         else if (sl(2).le.0. .and. sr(2).ge.0.) then
c           # transonic 3-rarefaction 
            us = (gamma1*ur - 2.*cr)/(gamma+1.)
	    e0 = pr/(rhor**gamma)
	    rhos = (us**2/(gamma*e0))**(1./gamma1)
	    ps = e0*rhos**gamma
            Y2s  = Y2r
	    endif
c
         f0(i,1) = (1.d0-Y2s)*rhos*us
         f0(i,2) = Y2s*rhos*us
         f0(i,3) = rhos*us**2 + ps
         f0(i,4) = us*(gamma*ps/gamma1 + Y2s*rhos*q0 + 0.5*rhos*us**2)
  200    continue
c
c
c     # compute fluxes in each cell:
c
      call flx1(maxmx,meqn,mbc,mx,qr,maux,auxr,dfr)
      call flx1(maxmx,meqn,mbc,mx,ql,maux,auxl,dfl)
c
      do 210 m=1,meqn
	 do 210 i = 1-mbc, mx+mbc
            fr(i,m) = dfr(i,m)
            fl(i,m) = dfl(i,m)
 210  continue
c
c     # compute the leftgoing and rightgoing flux differences:
      do 220 m=1,meqn
         do 220 i = 2-mbc, mx+mbc
	    dfl(i,m) = f0(i,m) - fr(i-1,m)
	    dfr(i,m) = fl(i,m) - f0(i,m)
 220  continue
c     
      return
      end
c
c
      double precision function phi(w)
      implicit double precision (a-h,o-z)
      common /param/  gamma,gamma1,q0
c
      sqg = dsqrt(gamma)
      if (w .gt. 1.) then
          phi = dsqrt(w*(gamma+1.)/2. + gamma1/2.)
        else if (w .gt. 0.99999) then
	  phi = sqg
	else if (w .gt. .999) then
	  phi = sqg + (2*gamma**2 - 3.*gamma + 1)
     &          *(w-1.) / (4.*sqg)
	else
          phi = gamma1*(1.-w) / (2.*sqg*(1.-w**(gamma1/(2.*gamma))))
	endif
      return
      end

<