vtf-logo

src/1d/equations/euler/rpznd/rp1euzndefix.f

c
c =========================================================
      subroutine rp1euznd(maxmx,meqn,mwaves,mbc,mx,ql,qr,maux,
     &     auxl,auxr,wave,s,amdq,apdq)
c =========================================================
c
c     # solve Riemann problems for the 1D ZND-Euler equations using Roe's 
c     # approximate Riemann solver.  
c
c     # On input, ql contains the state vector at the left edge of each cell
c     #           qr contains the state vector at the right edge of each cell
c
c     # On output, wave contains the waves, 
c     #            s the speeds, 
c     #            amdq the  left-going flux difference  A^- \Delta q
c     #            apdq the right-going flux difference  A^+ \Delta q
c
c     # Note that the i'th Riemann problem has left state qr(i-1,:)
c     #                                    and right state ql(i,:)
c     # From the basic routines, this routine is called with ql = qr
c
c     # Copyright (C) 2002 Ralf Deiterding
c     # Brandenburgische Universitaet Cottbus
c
      implicit double precision (a-h,o-z)
c
      dimension wave(1-mbc:maxmx+mbc, meqn, mwaves)
      dimension    s(1-mbc:maxmx+mbc, mwaves)
      dimension   ql(1-mbc:maxmx+mbc, meqn)
      dimension   qr(1-mbc:maxmx+mbc, meqn)
      dimension auxl(1-mbc:maxmx+mbc, maux)
      dimension auxr(1-mbc:maxmx+mbc, maux)
      dimension apdq(1-mbc:maxmx+mbc, meqn)
      dimension amdq(1-mbc:maxmx+mbc, meqn)
c
c     # local storage
c     ---------------
      parameter (max2 = 100002)  !# assumes at most 100000 grid points with mbc=2
      dimension u(-1:max2), enth(-1:max2), a(-1:max2), smax(-1:max2)
      dimension delta(4), Y(2,-1:max2), fl(-1:max2,4), fr(-1:max2,4)
      logical efix, pfix, hll, roe, hllfix
      common /param/  gamma,gamma1,q0
c
      data efix /.true./   !# use entropy fix for transonic rarefactions
      data pfix /.true./   !# use Larrouturou's positivity fix for species
      data hll  /.true./   !# use HLL solver if unphysical values occur
      data roe  /.true./   !# use Roe solver
c
c     # Riemann solver returns flux differences 
c     ------------
      common /rpnflx/ mrpnflx
      mrpnflx = 0
c
      if (-1.gt.1-mbc .or. max2 .lt. maxmx+mbc) then
	 write(6,*) 'need to increase max2 in rp'
	 stop
      endif
c     
c     # Compute Roe-averaged quantities:
c
      do 10 i=2-mbc,mx+mbc
c
         rhol = qr(i-1,1)+qr(i-1,2)
         rhor = ql(i  ,1)+ql(i  ,2)
         ul = qr(i-1,3)/rhol
         ur = ql(i  ,3)/rhor
	 pl = gamma1*(qr(i-1,4) - qr(i-1,2)*q0 - 0.5d0*ul**2*rhol)
	 pr = gamma1*(ql(i,  4) - ql(i,  2)*q0 - 0.5d0*ur**2*rhor)
         al = dsqrt(gamma*pl/rhol)
         ar = dsqrt(gamma*pr/rhor)
         rhsqrtl = dsqrt(rhol)  
         rhsqrtr = dsqrt(rhor)
         rhsq2 = rhsqrtl + rhsqrtr
	 u(i) = (qr(i-1,3)/rhsqrtl + ql(i,3)/rhsqrtr) / rhsq2
	 enth(i) = (((qr(i-1,4)+pl)/rhsqrtl
     &		   + (ql(i  ,4)+pr)/rhsqrtr)) / rhsq2
         Y(1,i) = (qr(i-1,1)/rhsqrtl + ql(i,1)/rhsqrtr) / rhsq2
         Y(2,i) = (qr(i-1,2)/rhsqrtl + ql(i,2)/rhsqrtr) / rhsq2
c        # speed of sound
         a2 = gamma1*(enth(i) - 0.5d0*u(i)**2 - Y(2,i)*q0)
         a(i) = dsqrt(a2) 
         smax(i) = dmax1(dmax1(dabs(ur-ar-(ul-al)),dabs(ur-ul)),
     &        dabs(ur+ar-(ul+al)))
c
   10    continue
c
      do 30 i=2-mbc,mx+mbc
c
c        # find a1 thru a3, the coefficients of the 4 eigenvectors:
c
         do k = 1, 4
            delta(k) = ql(i,k) - qr(i-1,k)
         enddo
         drho = delta(1) + delta(2)
c
         a2  = gamma1/a(i)**2 * (drho*0.5d0*u(i)**2 - delta(2)*q0 
     &        - u(i)*delta(3) + delta(4))
         a3 = 0.5d0*( a2 - ( u(i)*drho - delta(3) )/a(i) )
         a1 = a2 - a3 
c
c        # Compute the waves.
c
c      # 1-wave
         wave(i,1,1) = a1*Y(1,i)
         wave(i,2,1) = a1*Y(2,i)
         wave(i,3,1) = a1*(u(i) - a(i))
         wave(i,4,1) = a1*(enth(i) - u(i)*a(i))
         s(i,1) = u(i)-a(i)
c
c      # 2-wave
         wave(i,1,2) = delta(1) - Y(1,i)*a2
         wave(i,2,2) = delta(2) - Y(2,i)*a2         
         wave(i,3,2) = (drho - a2)*u(i)
         wave(i,4,2) = (drho - a2)*0.5d0*u(i)**2 + 
     &        q0*(delta(2) - Y(2,i)*a2)
         s(i,2) = u(i)
c
c      # 3-wave
         wave(i,1,3) = a3*Y(1,i)
         wave(i,2,3) = a3*Y(2,i)
         wave(i,3,3) = a3*(u(i) + a(i))
         wave(i,4,3) = a3*(enth(i) + u(i)*a(i))
         s(i,3) = u(i)+a(i)
c                  
   30 continue
c
c     # compute flux differences as
c     #  (+/-)
c     # A     (Ur-Ul) = 0.5*( f(Ur)-f(Ul) +/- |A|(Ur-Ul) )
c     --------------------------
c
      call flx1(maxmx,meqn,mbc,mx,qr,maux,auxr,apdq)
      call flx1(maxmx,meqn,mbc,mx,ql,maux,auxl,amdq)
c
      do 35 i = 1-mbc, mx+mbc
         do 35 m=1,meqn
            fl(i,m) = amdq(i,m)
            fr(i,m) = apdq(i,m)
 35   continue      
c
      if (roe) then
         do 40 i = 2-mbc, mx+mbc
            do 40 m=1,meqn
               amdq(i,m) = 0.5d0*(fl(i,m)-fr(i-1,m))
 40      continue
c
         do 50 i = 2-mbc, mx+mbc
            do 50 m=1,meqn
               sw = 0.d0
               do 60 mw=1,mwaves
                  sl = dabs(s(i,mw))
c     # Alternative (worse results for 2nd order)
c               if (efix) sl = sl + 0.5d0*smax(i)
                  if (efix.and.dabs(s(i,mw)).lt.smax(i)) 
     &                 sl = s(i,mw)**2/(2.d0*smax(i))+
     &                 0.5d0*smax(i)
                  sw = sw + sl*wave(i,m,mw)
 60            continue
               amdq(i,m) = amdq(i,m) - 0.5d0*sw
               apdq(i,m) = amdq(i,m) + sw
 50      continue
      endif
c
      if (hll) then
         do 55 i = 2-mbc, mx+mbc
            hllfix = .false.
            if (.not.roe) hllfix = .true.
c     
            rho1l = qr(i-1,1) + wave(i,1,1)
            rho2l = qr(i-1,2) + wave(i,2,1)
            rhoul = qr(i-1,3) + wave(i,3,1)
            El    = qr(i-1,4) + wave(i,4,1)
            pl = gamma1*(El - rho2l*q0 - 0.5d0*rhoul**2/(rho1l+rho2l))
            if (rho1l+rho2l.le.0.d0.or.pl.le.0.d0) 
     &           hllfix = .true.
c     
            rho1r = ql(i,1) - wave(i,1,3)
            rho2r = ql(i,2) - wave(i,2,3)
            rhour = ql(i,3) - wave(i,3,3)
            Er    = ql(i,4) - wave(i,4,3)
            pr = gamma1*(Er - rho2r*q0 - 0.5d0*rhour**2/(rho1r+rho2r))
            if (rho1r+rho2r.le.0.d0.or.pr.le.0.d0) 
     &           hllfix = .true.
c     
            if (hllfix) then
c               if (roe) write (6,*) 'Switching to HLL in',i
c     
               rl = qr(i-1,1) + qr(i-1,2)
               ul = qr(i-1,3)/rl
               pl = gamma1*(qr(i-1,4) - qr(i-1,2)*q0 - 
     &              0.5d0*qr(i-1,3)**2/rl)
               al = dsqrt(gamma*pl/rl)
c     
               rr = ql(i  ,1) + ql(i  ,2)
               ur = ql(i  ,3)/rr
               pr = gamma1*(ql(i  ,4) - ql(i  ,2)*q0 - 
     &              0.5d0*ql(i  ,3)**2/rr)
               ar = dsqrt(gamma*pr/rr)
c     
               sl = dmin1(ul-al,ur-ar)
               sr = dmax1(ul+al,ur+ar)
c
               do m=1,meqn
                  if (sl.ge.0.d0) fg = fr(i-1,m)
                  if (sr.le.0.d0) fg = fl(i,m)
                  if (sl.lt.0.d0.and.sr.gt.0.d0) 
     &                 fg = (sr*fr(i-1,m) - sl*fl(i,m) + 
     &                 sl*sr*(ql(i,m)-qr(i-1,m)))/ (sr-sl)
                  amdq(i,m) =   fg-fr(i-1,m)
                  apdq(i,m) = -(fg-fl(i  ,m))
               enddo
               s(i,1) = sl
               s(i,2) = 0.d0
               s(i,3) = sr
            endif     
 55      continue
      endif
c
      if (pfix) then
         do 70 i=2-mbc,mx+mbc
            amdr = amdq(i,1)+amdq(i,2)
            apdr = apdq(i,1)+apdq(i,2)
            rhol = qr(i-1,1)+qr(i-1,2)
            rhor = ql(i  ,1)+ql(i  ,2)
            do 70 m=1,2
               if (qr(i-1,3)+amdr.gt.0.d0) then
                  Z = qr(i-1,m)/rhol
               else
                  Z = ql(i  ,m)/rhor
               endif
               amdq(i,m) = Z*amdr + (Z-qr(i-1,m)/rhol)*qr(i-1,3)
               apdq(i,m) = Z*apdr - (Z-ql(i  ,m)/rhor)*ql(i  ,3)               
 70     continue    
      endif
c
      return
      end
c

<