vtf-logo

src/1d/equations/euler/rpm/rp1eumhllc.f

c
c =========================================================
      subroutine rp1eum(maxmx,meqn,mwaves,mbc,mx,ql,qr,maux,
     &     auxl,auxr,wave,s,amdq,apdq)
c =========================================================
c
c     # solve Riemann problems for the 1D two-component Euler equations 
c     # using HLLC
c
c     # On input, ql contains the state vector at the left edge of each cell
c     #           qr contains the state vector at the right edge of each cell
c     # On output, wave contains the waves, 
c     #            s the speeds, 
c     #            amdq the  left-going flux difference  A^- \Delta q
c     #            apdq the right-going flux difference  A^+ \Delta q
c
c     # Note that the i'th Riemann problem has left state qr(i-1,:)
c     #                                    and right state ql(i,:)
c     # From the basic routine step1, rp is called with ql = qr = q.
c
c     # Copyright (C) 2003-2007 California Institute of Technology
c     # Ralf Deiterding, ralf@amroc.net
c
      implicit double precision (a-h,o-z)
      dimension   ql(1-mbc:maxmx+mbc, meqn)
      dimension   qr(1-mbc:maxmx+mbc, meqn)
      dimension    s(1-mbc:maxmx+mbc, mwaves)
      dimension wave(1-mbc:maxmx+mbc, meqn, mwaves)
      dimension amdq(1-mbc:maxmx+mbc, meqn)
      dimension apdq(1-mbc:maxmx+mbc, meqn)
c 
c     # local storage
c     ---------------
      parameter (max2 = 100002)  !# assumes at most 100000 grid points with mbc=2
      dimension qls(3), qrs(3)
c
c     # Riemann solver returns flux differences
c     ------------
      common /rpnflx/ mrpnflx
      mrpnflx = 0
c
      do 10 i = 2-mbc, mx+mbc
c     
         rl = qr(i-1,1)
         ul = qr(i-1,2)/rl
         pl = (qr(i-1,3) - 0.5d0*qr(i-1,2)**2/rl 
     &        - qr(i-1,5) ) / qr(i-1,4)
c     
         rr = ql(i  ,1)
         ur = ql(i  ,2)/rr
         pr = (ql(i  ,3) - 0.5d0*ql(i  ,2)**2/rr
     &        - ql(i  ,5) ) / ql(i  ,4)
c     
         rhsqrtl = dsqrt(qr(i-1,1))
         rhsqrtr = dsqrt(ql(i,1))
         rhsq2 = rhsqrtl + rhsqrtr
         gamma1 = rhsq2 / ( qr(i-1,4)*rhsqrtl + ql(i,4)*rhsqrtr ) 
         ui = (qr(i-1,2)/rhsqrtl + ql(i,2)/rhsqrtr) / rhsq2
         enthi = (((qr(i-1,3)+pl)/rhsqrtl
     &           + (ql(i  ,3)+pr)/rhsqrtr)) / rhsq2                      
         ai = dsqrt(gamma1*(enthi - .5d0*ui**2))
c
         sl = ui-ai
         sr = ui+ai
         ss = (pr-pl+rl*ul*(sl-ul)-rr*ur*(sr-ur))/
     &        (rl*(sl-ul)-rr*(sr-ur))
c
         qrs(1) = rr*(sr-ur)/(sr-ss)
         qrs(2) = qrs(1)*ss
         qrs(3) = qrs(1)*(ql(i  ,3)/rr+
     &        (ss-ur)*(ss+pr/(rr*(sr-ur))))
c     
         qls(1) = rl*(sl-ul)/(sl-ss)
         qls(2) = qls(1)*ss
         qls(3) = qls(1)*(qr(i-1,3)/rl+
     &        (ss-ul)*(ss+pl/(rl*(sl-ul))))
c
         do m=1,3
            wave(i,m,1) = qls(m) - qr(i-1,m)
            wave(i,m,2) = qrs(m) - qls(m)
            wave(i,m,3) = ql(i,m) - qrs(m) 
         enddo
         do m=4,5
            wave(i,m,1) = 0.d0
            wave(i,m,2) = ql(i,m) - qr(i-1,m)
            wave(i,m,3) = 0.d0
         enddo
c
         s(i,1) = sl
         s(i,2) = ss
         s(i,3) = sr
c  
         do m=1,meqn
            amdq(i,m) = 0.d0
            apdq(i,m) = 0.d0
            do mw=1,mwaves
               if (s(i,mw) .lt. 0.d0) then
                  amdq(i,m) = amdq(i,m) + s(i,mw)*wave(i,m,mw)
               else
                  apdq(i,m) = apdq(i,m) + s(i,mw)*wave(i,m,mw)
               endif
            enddo
         enddo
 10   continue
      return
      end
c

<