vtf-logo

src/1d/equations/euler/rp/rp1euexactg.f

c
c
c =========================================================
      subroutine rp1eu(maxmx,meqn,mwaves,mbc,mx,ql,qr,maux,
     &     auxl,auxr,wave,s,fl,fr)
c =========================================================
c
c     # Riemann solver for the 1D Euler equations
c     # The waves are computed using the Roe approximation.
c   
c     # This is quite a bit slower than the Roe solver,
c     # but may give more accurate solutions for some problems.
c
c     # On input, ql contains the state vector at the left edge of each cell
c     #           qr contains the state vector at the right edge of each cell
c     # On output, wave contains the waves, s the speeds, 
c     # fl and fr the positive and negative Godunov flux.
c
c     # Note that the i'th Riemann problem has left state qr(i-1,:)
c     #                                    and right state ql(i,:)
c     # From the basic routine step1, rp is called with ql = qr = q.
c
c     Author:  Randall J. LeVeque
c
      implicit double precision (a-h,o-z)
      dimension   ql(1-mbc:maxmx+mbc, meqn)
      dimension   qr(1-mbc:maxmx+mbc, meqn)
      dimension    s(1-mbc:maxmx+mbc, mwaves)
      dimension wave(1-mbc:maxmx+mbc, meqn, mwaves)
      dimension   fr(1-mbc:maxmx+mbc, meqn)
      dimension   fl(1-mbc:maxmx+mbc, meqn)
c
c     # local storage
c     ---------------
      parameter (max2 = 100002)  !# assumes at most 100000 grid points with mbc=2
      dimension delta(3)
      dimension u(-1:max2),enth(-1:max2),a(-1:max2)
      common /param/  gamma,gamma1
      dimension sl(2), sr(2)
c
c     # Riemann solver returns flux differences
c     ------------
      common /rpnflx/ mrpnflx
      mrpnflx = 1
c
c     # Compute Roe-averaged quantities:
c
      do 20 i=2-mbc,mx+mbc
         rhsqrtl = dsqrt(qr(i-1,1))
         rhsqrtr = dsqrt(ql(i,1))
         pl = gamma1*(qr(i-1,3) - 0.5d0*(qr(i-1,2)**2)/qr(i-1,1))
         pr = gamma1*(ql(i,3) - 0.5d0*(ql(i,2)**2)/ql(i,1))
         rhsq2 = rhsqrtl + rhsqrtr
         u(i) = (qr(i-1,2)/rhsqrtl + ql(i,2)/rhsqrtr) / rhsq2
         enth(i) = (((qr(i-1,3)+pl)/rhsqrtl
     &             + (ql(i,3)+pr)/rhsqrtr)) / rhsq2
         a2 = gamma1*(enth(i) - .5d0*u(i)**2)
         a(i) = dsqrt(a2)
   20 continue
c
c
      do 30 i=2-mbc,mx+mbc
c
c        # find a1 thru a3, the coefficients of the 3 eigenvectors:
c
         delta(1) = ql(i,1) - qr(i-1,1)
         delta(2) = ql(i,2) - qr(i-1,2)
         delta(3) = ql(i,3) - qr(i-1,3)
         a2 = gamma1/a(i)**2 * ((enth(i)-u(i)**2)*delta(1) 
     &      + u(i)*delta(2) - delta(3))
         a3 = (delta(2) + (a(i)-u(i))*delta(1) - a(i)*a2) / (2.d0*a(i))
         a1 = delta(1) - a2 - a3
c
c        # Compute the waves.
c
         wave(i,1,1) = a1
         wave(i,2,1) = a1*(u(i)-a(i))
         wave(i,3,1) = a1*(enth(i) - u(i)*a(i))
         s(i,1) = u(i)-a(i)
c
         wave(i,1,2) = a2
         wave(i,2,2) = a2*u(i)
         wave(i,3,2) = a2*0.5d0*u(i)**2
         s(i,2) = u(i)
c
         wave(i,1,3) = a3
         wave(i,2,3) = a3*(u(i)+a(i))
         wave(i,3,3) = a3*(enth(i)+u(i)*a(i))
         s(i,3) = u(i)+a(i)
   30 continue
c
c     # compute Godunov flux f0 at each interface.  
c     # Uses exact Riemann solver
c
      do 200 i = 2-mbc, mx+mbc
c
         rhol = qr(i-1,1)
         rhor = ql(i  ,1)
         ul = qr(i-1,2)/qr(i-1,1)
         ur = ql(i  ,2)/ql(i  ,1)
         pl = gamma1*(qr(i-1,3) - 0.5d0*ul**2*qr(i-1,1))
         pr = gamma1*(ql(i,  3) - 0.5d0*ur**2*ql(i  ,1))
c
c        # iterate to find pstar, ustar:
c
         alpha = 1.
         pstar = 0.5*(pl+pr)
         wr = dsqrt(pr*rhor) * phi(pstar/pr)
         wl = dsqrt(pl*rhol) * phi(pstar/pl)
c        if (pl.eq.pr .and. rhol.eq.rhor) go to 60
c
   40    do 50 iter=1,20
            p1 = (ul-ur+pr/wr+pl/wl) / (1./wr + 1./wl)
            pstar = dmax1(p1,1d-6)*alpha + (1.-alpha)*pstar
            wr1 = wr
            wl1 = wl
            wr = dsqrt(pr*rhor) * phi(pstar/pr)
            wl = dsqrt(pl*rhol) * phi(pstar/pl)
            if (dmax1(abs(wr1-wr),dabs(wl1-wl)) .lt. 1d-6)
     &         go to 60
 50      continue
c
c        # nonconvergence:
         alpha = alpha/2.
         if (alpha .gt. 0.1) go to 40
c        write(6,*) 'no convergence',wr1,wr,wl1,wl
         wr = .5*(wr+wr1)
         wl = .5*(wl+wl1)
c
   60    continue
         ustar = (pl-pr+wr*ur+wl*ul) / (wr+wl)
c
c        # left wave:
c        ============
c
         if (pstar .gt. pl) then
c
c           # shock:
            sl(1) = ul - wl/rhol
            sr(1) = sl(1)
            rho1 = wl/(ustar-sl(1))
c
         else
c
c           # rarefaction:
            cl = dsqrt(gamma*pl/rhol)
            cstar = cl + 0.5*gamma1*(ul-ustar)
            sl(1) = ul-cl
            sr(1) = ustar-cstar
            rho1 = (pstar/pl)**(1./gamma) * rhol
         endif
c
c        # right wave:
c        =============
c
         if (pstar .ge. pr) then
c
c           # shock
            sl(2) = ur + wr/rhor
            sr(2) = sl(2)
            rho2 = wr/(sl(2)-ustar)
c
         else
c
c           # rarefaction:
            cr = dsqrt(gamma*pr/rhor)
            cstar = cr + 0.5*gamma1*(ustar-ur)
            sr(2) = ur+cr
            sl(2) = ustar+cstar
            rho2 = (pstar/pr)**(1./gamma)*rhor
         endif
c
c        # compute flux:
c        ===============
c
c        # compute state (rhos,us,ps) at x/t = 0:
c
         if (sl(1).gt.0) then
            rhos = rhol
            us = ul
            ps = pl
         else if (sr(1).le.0. .and. ustar.ge. 0.) then
            rhos = rho1
            us = ustar
            ps = pstar
         else if (ustar.lt.0. .and. sl(2).ge. 0.) then
            rhos = rho2
            us = ustar
            ps = pstar
         else if (sr(2).lt.0) then
            rhos = rhor
            us = ur
            ps = pr
         else if (sl(1).le.0. .and. sr(1).ge.0.) then
c           # transonic 1-rarefaction 
            us = (gamma1*ul + 2.*cl)/(gamma+1.)
            e0 = pl/(rhol**gamma)
            rhos = (us**2/(gamma*e0))**(1./gamma1)
            ps = e0*rhos**gamma
         else if (sl(2).le.0. .and. sr(2).ge.0.) then
c           # transonic 3-rarefaction 
            us = (gamma1*ur - 2.*cr)/(gamma+1.)
            e0 = pr/(rhor**gamma)
            rhos = (us**2/(gamma*e0))**(1./gamma1)
            ps = e0*rhos**gamma
         endif
c
         fl(i,1) = rhos*us
         fl(i,2) = rhos*us**2 + ps
         fl(i,3) = us*(gamma*ps/gamma1 + 0.5*rhos*us**2)
  200 continue
c
      do 220 m=1,3
         do 220 i = 2-mbc, mx+mbc
            fr(i,m) = -fl(i,m)
 220  continue
c
      return
      end
c
c
      double precision function phi(w)
      implicit double precision (a-h,o-z)
      common /param/  gamma,gamma1
c
      sqg = dsqrt(gamma)
      if (w .gt. 1.) then
         phi = dsqrt(w*(gamma+1.)/2. + gamma1/2.)
      else if (w .gt. 0.99999) then
         phi = sqg
      else if (w .gt. .999) then
         phi = sqg + (2*gamma**2 - 3.*gamma + 1)
     &         *(w-1.) / (4.*sqg)
      else
         phi = gamma1*(1.-w) / (2.*sqg*(1.-w**(gamma1/(2.*gamma))))
      endif
      return
      end
c

<