vtf-logo

src/1d/equations/euler/rp/rp1euefix.f

c
c =========================================================
      subroutine rp1eu(maxmx,meqn,mwaves,mbc,mx,ql,qr,maux,
     &     auxl,auxr,wave,s,amdq,apdq)
c =========================================================
c
c     # solve Riemann problems for the 1D Euler equations using Roe's 
c     # approximate Riemann solver.  
c
c     # On input, ql contains the state vector at the left edge of each cell
c     #           qr contains the state vector at the right edge of each cell
c
c     # On output, wave contains the waves, 
c     #            s the speeds, 
c     #            amdq the  left-going flux difference  A^- \Delta q
c     #            apdq the right-going flux difference  A^+ \Delta q
c
c     # Note that the i'th Riemann problem has left state qr(i-1,:)
c     #                                    and right state ql(i,:)
c     # From the basic routines, this routine is called with ql = qr
c
c     Author: Ralf Deiterding
c
      implicit double precision (a-h,o-z)
c
      dimension wave(1-mbc:maxmx+mbc, meqn, mwaves)
      dimension    s(1-mbc:maxmx+mbc, mwaves)
      dimension   ql(1-mbc:maxmx+mbc, meqn)
      dimension   qr(1-mbc:maxmx+mbc, meqn)
      dimension auxl(1-mbc:maxmx+mbc, maux)
      dimension auxr(1-mbc:maxmx+mbc, maux)
      dimension apdq(1-mbc:maxmx+mbc, meqn)
      dimension amdq(1-mbc:maxmx+mbc, meqn)
c
c     # local storage
c     ---------------
      parameter (max2 = 100002)  !# assumes at most 100000 grid points with mbc=2
      dimension u(-1:max2), enth(-1:max2), a(-1:max2), smax(-1:max2)
      dimension delta(3), fl(-1:max2,3), fr(-1:max2,3)
      logical efix, hll, roe, hllfix
      common /param/  gamma,gamma1
c
      data efix /.true./   !# use entropy fix for transonic rarefactions
      data hll  /.true./   !# use HLL solver if unphysical values occur
      data roe  /.true./   !# use Roe solver
c
c     # Riemann solver returns flux differences
c     ------------
      common /rpnflx/ mrpnflx
      mrpnflx = 0
c
      if (-1.gt.1-mbc .or. max2 .lt. maxmx+mbc) then
	 write(6,*) 'need to increase max2 in rp'
	 stop
      endif
c     
c     # Compute Roe-averaged quantities:
c
      do 20 i=2-mbc,mx+mbc
	 rhsqrtl = dsqrt(qr(i-1,1))
	 rhsqrtr = dsqrt(ql(i,1))
         ul = qr(i-1,2)/qr(i-1,1)
         ur = ql(i  ,2)/ql(i  ,1)
	 pl = gamma1*(qr(i-1,3) - 0.5d0*(qr(i-1,2)**2)/qr(i-1,1))
	 pr = gamma1*(ql(i  ,3) - 0.5d0*(ql(i  ,2)**2)/ql(i  ,1))
         al = dsqrt(gamma*pl/qr(i-1,1))
         ar = dsqrt(gamma*pr/ql(i  ,1))
	 rhsq2 = rhsqrtl + rhsqrtr
	 u(i) = (qr(i-1,2)/rhsqrtl + ql(i,2)/rhsqrtr) / rhsq2
	 enth(i) = (((qr(i-1,3)+pl)/rhsqrtl
     &		   + (ql(i,3)+pr)/rhsqrtr)) / rhsq2
         a2 = gamma1*(enth(i) - .5d0*u(i)**2)
         a(i) = dsqrt(a2)
         smax(i) = dmax1(dmax1(dabs(ur-ar-(ul-al)),dabs(ur-ul)),
     &        dabs(ur+ar-(ul+al)))
c
   20    continue
c
      do 30 i=2-mbc,mx+mbc
c
c        # find a1 thru a3, the coefficients of the 3 eigenvectors:
c
         delta(1) = ql(i,1) - qr(i-1,1)
         delta(2) = ql(i,2) - qr(i-1,2)
         delta(3) = ql(i,3) - qr(i-1,3)
         a2 = gamma1/a(i)**2 * ((enth(i)-u(i)**2)*delta(1) 
     &      + u(i)*delta(2) - delta(3))
         a3 = (delta(2) + (a(i)-u(i))*delta(1) - a(i)*a2) / (2.d0*a(i))
         a1 = delta(1) - a2 - a3
c
c        # Compute the waves.
c
         wave(i,1,1) = a1
         wave(i,2,1) = a1*(u(i)-a(i))
         wave(i,3,1) = a1*(enth(i) - u(i)*a(i))
         s(i,1) = u(i)-a(i)
c
         wave(i,1,2) = a2
         wave(i,2,2) = a2*u(i)
         wave(i,3,2) = a2*0.5d0*u(i)**2
         s(i,2) = u(i)
c
         wave(i,1,3) = a3
         wave(i,2,3) = a3*(u(i)+a(i))
         wave(i,3,3) = a3*(enth(i)+u(i)*a(i))
         s(i,3) = u(i)+a(i)
   30 continue
c
c     # compute flux differences as
c     #  (+/-)
c     # A     (Ur-Ul) = 0.5*( f(Ur)-f(Ul) +/- |A|(Ur-Ul) )
c     --------------------------
c
      call flx1(maxmx,meqn,mbc,mx,qr,maux,auxr,apdq)
      call flx1(maxmx,meqn,mbc,mx,ql,maux,auxl,amdq)
c
      do 35 i = 1-mbc, mx+mbc
         do 35 m=1,meqn
            fl(i,m) = amdq(i,m)
            fr(i,m) = apdq(i,m)
 35   continue      
c
      if (roe) then
         do 40 i = 2-mbc, mx+mbc
            do 40 m=1,meqn
               amdq(i,m) = 0.5d0*(fl(i,m)-fr(i-1,m))
 40      continue
c
         do 50 i = 2-mbc, mx+mbc
            do 50 m=1,meqn
               sw = 0.d0
               do 60 mw=1,mwaves
                  sl = dabs(s(i,mw))
                  if (efix.and.dabs(s(i,mw)).lt.smax(i).and.mw.ne.2) 
     &                 sl = s(i,mw)**2/(2.d0*smax(i))+0.5d0*smax(i)
                  sw = sw + sl*wave(i,m,mw)
 60            continue
               amdq(i,m) = amdq(i,m) - 0.5d0*sw
               apdq(i,m) = amdq(i,m) + sw
 50      continue
      endif
c
      if (hll) then
         do 55 i = 2-mbc, mx+mbc
            hllfix = .false.
            if (.not.roe) hllfix = .true.
c     
            rhol  = qr(i-1,1) + wave(i,1,1)
            rhoul = qr(i-1,2) + wave(i,2,1)
            El    = qr(i-1,3) + wave(i,3,1)
            pl = gamma1*(El - 0.5d0*rhoul**2/rhol)
            if (rhol.le.0.d0.or.pl.le.0.d0) hllfix = .true.
c     
            rhor  = ql(i,1) - wave(i,1,3)
            rhour = ql(i,2) - wave(i,2,3)
            Er    = ql(i,3) - wave(i,3,3)
            pr = gamma1*(Er - 0.5d0*rhour**2/rhor)
            if (rhor.le.0.d0.or.pr.le.0.d0) hllfix = .true.
c     
            if (hllfix) then
c               if (roe) write (6,*) 'Switching to HLL in',i
c     
               rl = qr(i-1,1)
               ul = qr(i-1,2)/rl
               pl = gamma1*(qr(i-1,3) - 0.5d0*qr(i-1,2)**2/rl)
               al = dsqrt(gamma*pl/rl)
c     
               rr = ql(i  ,1)
               ur = ql(i  ,2)/rr
               pr = gamma1*(ql(i  ,3) - 0.5d0*ql(i  ,2)**2/rr)
               ar = dsqrt(gamma*pr/rr)
c     
               sl = dmin1(ul-al,ur-ar)
               sr = dmax1(ul+al,ur+ar)
c
               do m=1,meqn
                  if (sl.ge.0.d0) fg = fr(i-1,m)
                  if (sr.le.0.d0) fg = fl(i,m)
                  if (sl.lt.0.d0.and.sr.gt.0.d0) 
     &                 fg = (sr*fr(i-1,m) - sl*fl(i,m) + 
     &                 sl*sr*(ql(i,m)-qr(i-1,m)))/ (sr-sl)
                  amdq(i,m) =   fg-fr(i-1,m)
                  apdq(i,m) = -(fg-fl(i  ,m))
               enddo
               s(i,1) = sl
               s(i,2) = 0.d0
               s(i,3) = sr
            endif     
 55      continue
      endif
c
      return
      end
c

<