vtf-logo

src/3d/equations/euler/rprhok/ip3eurhokrfl.f

c
c     Boundary conditions for ghost-fluid methods.
c 
c     Copyright (C) 2003-2007 California Institute of Technology
c     Ralf Deiterding, ralf@amroc.net
c
c     -----------------------------------------------------
c     Internal reflecting physical boundary conditions
c     for Euler equations for multiple thermally perfect species
c     -----------------------------------------------------
c
c     Transformation of vector of conserved quantities
c     into (rho1,...,rhoK,u,v,w,p,T,...)
c
c     =====================================================
      subroutine it3eurhokrfl(mx,my,mz,meqn,q,qt)
c     =====================================================
c
      implicit double precision(a-h,o-z)
      include  "ck.i"    
c     
      integer i, j, k, m, mx, my, mz, meqn
      double precision q(meqn,mx,my,mz), qt(meqn,mx,my,mz)
c
      do 10 k = 1, mz
         do 10 j = 1, my
            do 10 i = 1, mx 
               rho  = 0.d0
               rhoW = 0.d0
               do m = 1, Nsp
                  rho  = rho  + q(m,i,j,k)
                  rhoW = rhoW + q(m,i,j,k)/Wk(m)
                  qt(m,i,j,k) = q(m,i,j,k)
               enddo
               qt(Nsp+1,i,j,k) = q(Nsp+1,i,j,k)/rho
               qt(Nsp+2,i,j,k) = q(Nsp+2,i,j,k)/rho
               qt(Nsp+3,i,j,k) = q(Nsp+3,i,j,k)/rho
               qt(Nsp+4,i,j,k) = rhoW*RU*q(Nsp+5,i,j,k)
               do m = Nsp+5, meqn
                  qt(m,i,j,k) = q(m,i,j,k)
               enddo
 10   continue
c         
      return
      end
c
c     -----------------------------------------------------
c
c     Construction of reflective boundary conditions from
c     mirrored primitive values and application in
c     conservative form in local patch
c
c     =====================================================
      subroutine ip3eurhokrfl(q,mx,my,mz,lb,ub,meqn,nc,idx,
     &     qex,xc,phi,vn,maux,auex,dx,time)
c     =====================================================
c
      implicit double precision(a-h,o-z)
      include  "ck.i"    
c
      integer mx, my, mz, meqn, maux, nc, idx(3,nc), lb(3), ub(3)
      double precision q(meqn,mx,my,mz), qex(meqn,nc), xc(3,nc), 
     &     phi(nc), vn(3,nc), auex(maux,nc), dx(3), time
c
c     Local variables
c
      integer i, j, k, m, n, stride, getindx
      double precision rho, rhoW, u, v, w, vl, p, T
c
      stride = (ub(1) - lb(1))/(mx-1)
c
      do 100 n = 1, nc
c
         i = getindx(idx(1,n), lb(1), stride)
         j = getindx(idx(2,n), lb(2), stride)
         k = getindx(idx(3,n), lb(3), stride)
c
         rho  = 0.d0
         rhoW = 0.d0
         do m = 1, Nsp
            rho  = rho  + qex(m,n)
            rhoW = rhoW + qex(m,n)/Wk(m)
            q(m,i,j,k) = qex(m,n)
         enddo
c            
         u = -qex(Nsp+1,n)       
         v = -qex(Nsp+2,n)
         w = -qex(Nsp+3,n)
         p =  qex(Nsp+4,n)
         T =  p/(rhoW*RU)
c
c        # Add boundary velocities if available
         if (maux.ge.3) then
            u = u + auex(1,n)
            v = v + auex(2,n)
            w = w + auex(3,n)
         endif
c
c        # Construct normal velocity vector
c        # Tangential velocity remains unchanged
         vl = 2.d0*(u*vn(1,n)+v*vn(2,n)+w*vn(3,n))
         u = qex(Nsp+1,n) + vl*vn(1,n) 
         v = qex(Nsp+2,n) + vl*vn(2,n) 
         w = qex(Nsp+3,n) + vl*vn(3,n) 
c
         q(Nsp+1,i,j,k) = u*rho
         q(Nsp+2,i,j,k) = v*rho
         q(Nsp+3,i,j,k) = w*rho
         q(Nsp+4,i,j,k) = rho*0.5d0*(u**2+v**2+w**2) + 
     &        avgtabip(T,q(1,i,j,k),hms,Nsp) - p
         q(Nsp+5,i,j,k) = T
c
         do m = Nsp+6, meqn
            q(m,i,j,k) = qex(m,n)
         enddo
c
 100  continue
c
      return
      end
c
c
c     -----------------------------------------------------
c
c     Injection of conservative extrapolated values in local patch
c
c     =====================================================
      subroutine ip3eurhokex(q,mx,my,mz,lb,ub,meqn,nc,idx,
     &     qex,xc,phi,vn,maux,auex,dx,time)
c     =====================================================
c
      implicit double precision(a-h,o-z)
      include  "ck.i"    
c
      integer mx, my, mz, meqn, maux, nc, idx(3,nc), lb(3), ub(3)
      double precision q(meqn,mx,my,mz), qex(meqn,nc), xc(3,nc), 
     &     phi(nc), vn(3,nc), auex(maux,nc), dx(3), time
c
c     Local variables
c
      integer i, j, k, m, n, stride, getindx
      double precision rho, rhoW, u, v, w, vl, p, T
c
      stride = (ub(1) - lb(1))/(mx-1)
c
      do 100 n = 1, nc
c
         i = getindx(idx(1,n), lb(1), stride)
         j = getindx(idx(2,n), lb(2), stride)
         k = getindx(idx(3,n), lb(3), stride)
c
         rho  = 0.d0
         rhoW = 0.d0
         do m = 1, Nsp
            rho  = rho  + qex(m,n)
            rhoW = rhoW + qex(m,n)/Wk(m)
            q(m,i,j,k) = qex(m,n)
         enddo
c            
         u = qex(Nsp+1,n)       
         v = qex(Nsp+2,n)
         w = qex(Nsp+3,n)
         p = qex(Nsp+4,n)
         T = p/(rhoW*RU)
c
c        # Prescribe normal velocity vector
         vl = u*vn(1,n)+v*vn(2,n)+w*vn(3,n)
         u = vl*vn(1,n) 
         v = vl*vn(2,n) 
         w = vl*vn(3,n) 
c
         q(Nsp+1,i,j,k) = u*rho
         q(Nsp+2,i,j,k) = v*rho
         q(Nsp+3,i,j,k) = w*rho
         q(Nsp+4,i,j,k) = rho*0.5d0*(u**2+v**2+w**2) + 
     &        avgtabip(T,q(1,i,j,k),hms,Nsp) - p
         q(Nsp+5,i,j,k) = T
c
         do m = Nsp+6, meqn
            q(m,i,j,k) = qex(m,n)
         enddo
c
 100  continue
c
      return
      end
c

<