vtf-logo

src/2d/equations/euler/rpznd/ip2euzndrfl.f

c
c     Boundary conditions for ghost-fluid methods.
c 
c     Copyright (C) 2003-2007 California Institute of Technology
c     Ralf Deiterding, ralf@amroc.net
c
c     -----------------------------------------------------
c     Internal reflecting physical boundary conditions
c     for Euler equations
c     -----------------------------------------------------
c
c     Transformation of vector of conserved quantities
c     into primitives (rho1,rho2,u,v,p)
c
c     =====================================================
      subroutine it2euzndrfl(mx,my,meqn,q,qt)
c     =====================================================
      implicit none
c     
      common /param/  gamma,gamma1,q0
      double precision    gamma,gamma1,q0
      integer   i, j, mx, my, meqn
      double precision    q(meqn,mx,my), qt(meqn,mx,my)
c
      do 10 j = 1, my
         do 10 i = 1, mx 
            qt(1,i,j) = q(1,i,j)
            qt(2,i,j) = q(2,i,j)
            qt(3,i,j) = q(3,i,j)/(q(1,i,j)+q(2,i,j))
            qt(4,i,j) = q(4,i,j)/(q(1,i,j)+q(2,i,j))
            qt(5,i,j) = gamma1*(q(5,i,j) - q(2,i,j)*q0 - 
     &           0.5d0*(q(3,i,j)**2 + q(4,i,j)**2)/(q(1,i,j)+q(2,i,j)))
 10   continue
c         
      return
      end
c
c     -----------------------------------------------------
c
c     Construction of reflective boundary conditions from
c     mirrored primitive values and application in
c     conservative form in local patch
c
c     =====================================================
      subroutine ip2euzndrfl(q,mx,my,lb,ub,meqn,nc,idx,
     &     qex,xc,phi,vn,maux,auex,dx,time)
c     =====================================================

      implicit none

      common /param/  gamma,gamma1,q0
      double precision    gamma,gamma1,q0
      integer   mx, my, meqn, maux, nc, idx(2,nc), lb(2), 
     &     ub(2)
      double precision    q(meqn, mx, my), qex(meqn,nc), xc(2,nc), 
     &     phi(nc), vn(2,nc), auex(maux,nc), dx(2), time
c
c     Local variables
c
      integer   i, j, n, stride, getindx
      double precision    rho1, rho2, u, v, p, vl
c
      stride = (ub(1) - lb(1))/(mx-1)
c
      do 100 n = 1, nc

         i = getindx(idx(1,n), lb(1), stride)
         j = getindx(idx(2,n), lb(2), stride)
c
         rho1 =  qex(1,n)
         rho2 =  qex(2,n)
         u    = -qex(3,n)       
         v    = -qex(4,n)
         p    =  qex(5,n)
c
c        # Add boundary velocities if available
         if (maux.ge.2) then
            u = u + auex(1,n)
            v = v + auex(2,n)
         endif
c
c        # Construct normal velocity vector
c        # Tangential velocity remains unchanged
         vl = 2.d0*(u*vn(1,n)+v*vn(2,n))
         u = qex(3,n) + vl*vn(1,n) 
         v = qex(4,n) + vl*vn(2,n) 
c
         q(1,i,j) = rho1
         q(2,i,j) = rho2
         q(3,i,j) = u*(rho1+rho2)
         q(4,i,j) = v*(rho1+rho2)
         q(5,i,j) = p/gamma1+0.5d0*(rho1+rho2)*(u**2+v**2)+rho2*q0
c
 100  continue
c
      return
      end
c
c
c     -----------------------------------------------------
c
c     Injection of conservative extrapolated values in local patch
c
c     =====================================================
      subroutine ip2euzndex(q,mx,my,lb,ub,meqn,nc,idx,
     &     qex,xc,phi,vn,maux,auex,dx,time)
c     =====================================================
c
      implicit none
c
      common /param/  gamma,gamma1,q0
      double precision    gamma,gamma1,q0
      integer   mx, my, meqn, maux, nc, idx(2,nc), lb(2), 
     &     ub(2)
      double precision    q(meqn, mx, my), qex(meqn,nc), xc(2,nc), 
     &     phi(nc), vn(2,nc), auex(maux,nc), dx(2), time
c
c     Local variables
c
      integer   i, j, n, stride, getindx
      double precision    rho1, rho2, u, v, p, vl
c
      stride = (ub(1) - lb(1))/(mx-1)
c
      do 100 n = 1, nc

         i = getindx(idx(1,n), lb(1), stride)
         j = getindx(idx(2,n), lb(2), stride)
c
         rho1 = qex(1,n)
         rho2 = qex(2,n)
         u    = qex(3,n)       
         v    = qex(4,n)
         p    = qex(5,n)
c
c        # Prescribe normal velocity vector
         vl = u*vn(1,n)+v*vn(2,n)
         u = vl*vn(1,n) 
         v = vl*vn(2,n) 
c
         q(1,i,j) = rho1
         q(2,i,j) = rho2
         q(3,i,j) = u*(rho1+rho2)
         q(4,i,j) = v*(rho1+rho2)
         q(5,i,j) = p/gamma1+0.5d0*(rho1+rho2)*(u**2+v**2)+rho2*q0
c
 100  continue
c
      return
      end
c

<