vtf-logo

src/2d/equations/euler/rprhok/in2eurhok.f

c
c     ==========================================================
      subroutine in2eurhok(qi,mxi,myi,lbi,ubi,q,mx,my,lb,ub,
     &     lbr,ubr,shaper,meqn,nc,time)
c     ==========================================================
c
c     # Copyright (C) 2003-2007 California Institute of Technology
c     # Ralf Deiterding, ralf@amroc.net
c
      implicit double precision(a-h,o-z)
      include  "ck.i"   
      common /Energy/  NEnergy
c
      integer meqn, mx, my, mxi, myi
      dimension q(meqn,mx,my), qi(mxi,myi)
c
      integer  lb(2), ub(2), lbi(2), ubi(2), lbr(2), ubr(2), shaper(2), 
     &     mresult, stride, imin(2), imax(2), i, j, d, getindx
c
      stride = (ub(1) - lb(1))/(mx-1)
      do 5 d = 1, 2
         imin(d) = max(lb(d), lbr(d))
         imax(d) = min(ub(d), ubr(d))

         if (mod(imin(d)-lb(d),stride) .ne. 0) then
            imin(d) = imin(d) + stride - mod(imin(d)-lb(d),stride) 
         endif
         imin(d) = getindx(imin(d), lb(d), stride)  

         if (mod(imax(d)-lb(d),stride) .ne. 0) then
            imax(d) = imax(d) - mod(imax(d)-lb(d),stride) 
         endif
         imax(d) = getindx(imax(d), lb(d), stride)  
 5    continue
c
      if (nc.eq.1) NEnergy = 0
      if (nc.eq.4) NEnergy = 1
      if (nc.eq.5) NEnergy = 2
      if (nc.eq.6) NEnergy = 3
c
      do 10 i = imin(1), imax(1)
         do 10 j = imin(2), imax(2)   
c
c           # Total density 
            if (nc.eq.1) then 
               q(1,i,j) = qi(i,j)
c              # Convert kg/m**3 into g/cm**3
               if (ckunits) q(1,i,j) = q(1,i,j)*1.d-3
               do k = 2, Nsp
                  q(k,i,j) = q(1,i,j)
               enddo
            endif
c
c           # Velocity u
            if (nc.eq.2) then
               q(Nsp+1,i,j) = q(1,i,j)*qi(i,j)
c              # Convert cm/sec into m/sec
               if (ckunits) q(Nsp+1,i,j) = q(Nsp+1,i,j)*1.d2
            endif
c
c           # Velocity v
            if (nc.eq.3) then
               q(Nsp+2,i,j) = q(1,i,j)*qi(i,j)
c              # Convert cm/sec into m/sec
               if (ckunits) q(Nsp+2,i,j) = q(Nsp+2,i,j)*1.d2
            endif
c
c           # Total energy density
            if (nc.eq.4) then
               q(Nsp+3,i,j) = qi(i,j) 
c              # Convert J/m**3 into ergs/cm**3
               if (ckunits) q(Nsp+3,i,j) = q(Nsp+3,i,j)*1.d1
            endif
c
c           # Temperature - No unit conversion
            if (nc.eq.5) q(Nsp+4,i,j) = qi(i,j)
c
c           # Pressure
            if (nc.eq.6) then
               q(Nsp+4,i,j) = qi(i,j) 
c              # Convert Pa = J/m**2 into dynes/cm**2
               if (ckunits) q(Nsp+4,i,j) = q(Nsp+4,i,j)*1.d1
            endif
c
c           # Mass fractions - No unit conversion
            if (nc.ge.8.and.nc.le.Nsp+7) 
     &           q(nc-7,i,j) = q(nc-7,i,j)*qi(i,j)
c
c           # Total energy density
            if (nc.eq.Nsp+7.and.NEnergy.gt.0) then
               rho  = 0.d0
               rhoW = 0.d0
               do k = 1, Nsp
                  rho  = rho  + q(k,i,j)
                  rhoW = rhoW + q(k,i,j)/Wk(k)
               enddo
               if (NEnergy.eq.1) then
                  rhoe = q(Nsp+3,i,j)-0.5d0*(q(Nsp+1,i,j)**2+
     &                 q(Nsp+2,i,j)**2)/rho
                  call SolveTrhok(q(Nsp+4,i,j),rhoe,rhoW,
     &                 q(1,i,j),Nsp,ifail) 
               endif
               if (NEnergy.eq.3) 
     &              q(Nsp+4,i,j) = q(Nsp+4,i,j)/(rhoW*RU)
               if (NEnergy.eq.2.or.NEnergy.eq.3) 
     &              q(Nsp+3,i,j) = 0.5d0*(q(Nsp+1,i,j)**2+
     &              q(Nsp+2,i,j)**2)/rho - rhoW*RU*q(Nsp+4,i,j)
     &              + avgtabip(q(Nsp+4,i,j),q(1,i,j),hms,Nsp)
            endif
c
 10   continue         
c
      return
      end

<