vtf-logo

src/3d/equations/euler/rpm/flgout3meu.f

c
c     ==========================================================
      subroutine flgout3meu(q,mx,my,mz,lb,ub,qo,mxo,myo,mzo,lbo,ubo,
     &     lbr,ubr,shaper,meqn,nc,t)
c     ==========================================================
c
c     # Computes primitives for two-component Euler equations 
c     # for output and flagging.
c
c     # Copyright (C) 2002 Ralf Deiterding
c     # Brandenburgische Universitaet Cottbus
c
c     # Copyright (C) 2003-2007 California Institute of Technology
c     # Ralf Deiterding, ralf@amroc.net
c
      implicit double precision(a-h,o-z)
      common /PhysData/  Wk, g, pinf, RU, PA
      dimension Wk(2), g(2), pinf(2)
c
      integer meqn, mx, my, mz, mxo, myo, mzo
      dimension q(meqn,mx,my,mz), qo(mxo,myo,mzo)
      dimension Xk(2), cap(2)
c
      integer  lb(3), ub(3), lbo(3), ubo(3), lbr(3), ubr(3), shaper(3), 
     &     mresult, stride, imin(3), imax(3), i, getindx, d
c
      stride = (ub(1) - lb(1))/(mx-1)
      do 5 d = 1, 3
         imin(d) = max(lb(d), lbr(d))
         imax(d) = min(ub(d), ubr(d))
c
         if (mod(imin(d)-lb(d),stride) .ne. 0) then
            imin(d) = imin(d) + stride - mod(imin(d)-lb(d),stride) 
         endif
         imin(d) = getindx(imin(d), lb(d), stride)  
c
         if (mod(imax(d)-lb(d),stride) .ne. 0) then
            imax(d) = imax(d) - mod(imax(d)-lb(d),stride) 
         endif
         imax(d) = getindx(imax(d), lb(d), stride)  
 5    continue
c
      cap(1) = 1.d0 / (g(1)-1.d0)
      cap(2) = 1.d0 / (g(2)-1.d0)
      do 10 i = imin(1), imax(1)
         do 10 j = imin(2), imax(2)  
            do 10 k = imin(3), imax(3)
c
               if (nc.gt.5) then
                  gamma1 = 1.d0 / q(6,i,j,k)
                  gamma = gamma1 + 1.d0
                  p = gamma1*(q(5,i,j,k) - 0.5d0*(q(2,i,j,k)**2+ 
     &                 q(3,i,j,k)**2+q(4,i,j,k)**2)/q(1,i,j,k) - 
     &                 q(7,i,j,k))
                  pin = q(7,i,j,k)*gamma1/gamma
                  Xk(1) = (q(6,i,j,k)-cap(2)) / (cap(1)-cap(2))
                  Xk(2) = 1.d0-Xk(1)
                  W = Xk(1)*Wk(1) + Xk(2)*Wk(2)
               endif
c
c              # Density
               if (nc.eq.1) qo(i,j,k) = q(1,i,j,k)
c              # Velocity u
               if (nc.eq.2) qo(i,j,k) = q(2,i,j,k)/q(1,i,j,k)
c              # Velocity v
               if (nc.eq.3) qo(i,j,k) = q(3,i,j,k)/q(1,i,j,k)
c              # Velocity w
               if (nc.eq.4) qo(i,j,k) = q(4,i,j,k)/q(1,i,j,k)
c              # Total energy density
               if (nc.eq.5) qo(i,j,k) = q(5,i,j,k)
c              # Temperature 
               if (nc.eq.6) qo(i,j,k) = p/(q(1,i,j,k)*RU/W)
c              # Pressure
               if (nc.eq.7) qo(i,j,k) = p
c              # Gamma 
               if (nc.eq.8) qo(i,j,k) = gamma
c              # Y1
               if (nc.eq.9) qo(i,j,k) = Xk(1)*Wk(1)/W
c              # Y2
               if (nc.eq.10) qo(i,j,k) = Xk(2)*Wk(2)/W
c              # pinf
               if (nc.eq.11) qo(i,j,k) = pin
c              # Speed of sound
               if (nc.eq.12) qo(i,j,k) = dsqrt(gamma*(p+pin)/
     &              q(1,i,j,k))
c
 10      continue         
c
      return
      end

<