vtf-logo

src/3d/equations/euler/rpznd/flgout3euznd.f

c
c     ==========================================================
      subroutine flgout3euznd(q,mx,my,mz,lb,ub,qo,mxo,myo,mzo,lbo,ubo,
     &     lbr,ubr,shaper,meqn,nc,t)
c     ==========================================================
c
c     # Computes primitives for ZND Euler equations for output 
c     # and flagging.
c
c     # Copyright (C) 2002 Ralf Deiterding
c     # Brandenburgische Universitaet Cottbus
c
c     # Copyright (C) 2003-2007 California Institute of Technology
c     # Ralf Deiterding, ralf@amroc.net
c
      implicit double precision(a-h,o-z)
      common /param/  gamma,gamma1,q0
      common /PhysData/  Wk(2), RU, PA
c
      integer meqn, mx, my, mz, mxo, myo, mzo
      dimension q(meqn,mx,my,mz), qo(mxo,myo,mzo)
c
      integer  lb(3), ub(3), lbo(3), ubo(3), lbr(3), ubr(3), shaper(3), 
     &     mresult, stride, imin(3), imax(3), i, getindx, d
c
      stride = (ub(1) - lb(1))/(mx-1)
      do 5 d = 1, 3
         imin(d) = max(lb(d), lbr(d))
         imax(d) = min(ub(d), ubr(d))

         if (mod(imin(d)-lb(d),stride) .ne. 0) then
            imin(d) = imin(d) + stride - mod(imin(d)-lb(d),stride) 
         endif
         imin(d) = getindx(imin(d), lb(d), stride)  

         if (mod(imax(d)-lb(d),stride) .ne. 0) then
            imax(d) = imax(d) - mod(imax(d)-lb(d),stride) 
         endif
         imax(d) = getindx(imax(d), lb(d), stride)  
 5    continue

      do 10 i = imin(1), imax(1)
         do 10 j = imin(2), imax(2)
            do 10 k = imin(3), imax(3)
c              # Density
               if (nc.eq.1) qo(i,j,k) = q(1,i,j,k) + q(2,i,j,k) 
c              # Velocity u
               if (nc.eq.2) qo(i,j,k) = q(3,i,j,k) / 
     &              (q(1,i,j,k) + q(2,i,j,k))
c              # Velocity v
               if (nc.eq.3) qo(i,j,k) = q(4,i,j,k) /
     &              (q(1,i,j,k) + q(2,i,j,k))
c              # Velocity w
               if (nc.eq.4) qo(i,j,k) = q(5,i,j,k) /
     &              (q(1,i,j,k) + q(2,i,j,k))
c              # Total energy density
               if (nc.eq.5) qo(i,j,k) = q(6,i,j,k)
c              # Temperature 
               if (nc.eq.6) then 
                  rho = q(1,i,j,k) + q(2,i,j,k)
                  p = gamma1*(q(6,i,j,k) - q(2,i,j,k)*q0 -
     &              0.5d0*(q(3,i,j,k)**2+q(4,i,j,k)**2+
     &                 q(5,i,j,k)**2)/rho)
                  W = 1.d0/((q(1,i,j,k)/rho)/Wk(1) + 
     &                 (q(2,i,j,k)/rho)/Wk(2))
                  qo(i,j,k) = (p*W)/(rho*RU)
               endif
c              # Pressure
               if (nc.eq.7) qo(i,j,k) = gamma1*(q(6,i,j,k)-
     &              q(2,i,j,k)*q0-0.5d0*
     &              (q(3,i,j,k)**2+q(4,i,j,k)**2+q(5,i,j,k)**2)/
     &              (q(1,i,j,k) + q(2,i,j,k)))
c              # Gamma 
               if (nc.eq.8) qo(i,j,k) = gamma
c              # Y1 
               if (nc.eq.9) qo(i,j,k) = q(1,i,j,k) / 
     &              (q(1,i,j,k) + q(2,i,j,k))
c              # Y2 
               if (nc.eq.10) qo(i,j,k) = q(2,i,j,k) / 
     &              (q(1,i,j,k) + q(2,i,j,k))
 10   continue         

      return
      end

<