vtf-logo

src/2d/equations/euler/rpm/flgout2meu.f

c
c     ==========================================================
      subroutine flgout2meu(q,mx,my,lb,ub,qo,mxo,myo,lbo,ubo,
     &     lbr,ubr,shaper,meqn,nc,t)
c     ==========================================================
c
c     # Computes primitives for two-component Euler equations 
c     # for output and flagging.
c
c     # Copyright (C) 2002 Ralf Deiterding
c     # Brandenburgische Universitaet Cottbus
c
c     # Copyright (C) 2003-2007 California Institute of Technology
c     # Ralf Deiterding, ralf@amroc.net
c
      implicit double precision(a-h,o-z)
      common /PhysData/  Wk, g, pinf, RU, PA
      dimension Wk(2), g(2), pinf(2)
c
      integer meqn, mx, my, mxo, myo
      dimension q(meqn,mx,my), qo(mxo,myo)
      dimension Xk(2), cap(2)
c
      integer  lb(2), ub(2), lbo(2), ubo(2), lbr(2), ubr(2), shaper(2), 
     &     mresult, stride, imin(2), imax(2), i, j, d, getindx
c
      stride = (ub(1) - lb(1))/(mx-1)
      do 5 d = 1, 2
         imin(d) = max(lb(d), lbr(d))
         imax(d) = min(ub(d), ubr(d))
c
         if (mod(imin(d)-lb(d),stride) .ne. 0) then
            imin(d) = imin(d) + stride - mod(imin(d)-lb(d),stride) 
         endif
         imin(d) = getindx(imin(d), lb(d), stride)  
c
         if (mod(imax(d)-lb(d),stride) .ne. 0) then
            imax(d) = imax(d) - mod(imax(d)-lb(d),stride) 
         endif
         imax(d) = getindx(imax(d), lb(d), stride)  
 5    continue
c
      cap(1) = 1.d0 / (g(1)-1.d0)
      cap(2) = 1.d0 / (g(2)-1.d0)
      do 10 i = imin(1), imax(1)
         do 10 j = imin(2), imax(2)  
c
            if (nc.gt.4) then
               gamma1 = 1.d0 / q(5,i,j)
               gamma = gamma1 + 1.d0
               p = gamma1*(q(4,i,j) - 0.5d0*(q(2,i,j)**2 + 
     &              q(3,i,j)**2)/q(1,i,j) - q(6,i,j))
               pin = q(6,i,j)*gamma1/gamma
               Xk(1) = (q(5,i,j)-cap(2)) / (cap(1)-cap(2))
               Xk(2) = 1.d0-Xk(1)
               W = Xk(1)*Wk(1) + Xk(2)*Wk(2)
            endif
c
c           # Density
            if (nc.eq.1) qo(i,j) = q(1,i,j)
c           # Velocity u
            if (nc.eq.2) qo(i,j) = q(2,i,j)/q(1,i,j)
c           # Velocity v
            if (nc.eq.3) qo(i,j) = q(3,i,j)/q(1,i,j)
c           # Total energy density
            if (nc.eq.4) qo(i,j) = q(4,i,j)
c           # Temperature 
            if (nc.eq.5) qo(i,j) = p/(q(1,i,j)*RU/W)
c           # Pressure
            if (nc.eq.6) qo(i,j) = p
c           # Gamma 
            if (nc.eq.7) qo(i,j) = gamma
c           # Y1
            if (nc.eq.8) qo(i,j) = Xk(1)*Wk(1)/W
c           # Y2
            if (nc.eq.9) qo(i,j) = Xk(2)*Wk(2)/W
c           # pinf
            if (nc.eq.10) qo(i,j) = pin
c           # Speed of sound
            if (nc.eq.11) qo(i,j) = dsqrt(gamma*(p+pin)/
     &           q(1,i,j))
c
 10      continue         
c
      return
      end

<